<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->
model_phoneme_onSet0.0
This model is a fine-tuned version of facebook/wav2vec2-large-xlsr-53 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0340
- 0 Precision: 1.0
- 0 Recall: 1.0
- 0 F1-score: 1.0
- 0 Support: 27
- 1 Precision: 1.0
- 1 Recall: 1.0
- 1 F1-score: 1.0
- 1 Support: 31
- 2 Precision: 1.0
- 2 Recall: 1.0
- 2 F1-score: 1.0
- 2 Support: 24
- 3 Precision: 1.0
- 3 Recall: 1.0
- 3 F1-score: 1.0
- 3 Support: 16
- Accuracy: 1.0
- Macro avg Precision: 1.0
- Macro avg Recall: 1.0
- Macro avg F1-score: 1.0
- Macro avg Support: 98
- Weighted avg Precision: 1.0
- Weighted avg Recall: 1.0
- Weighted avg F1-score: 1.0
- Weighted avg Support: 98
- Wer: 0.0612
- Mtrix: [[0, 1, 2, 3], [0, 27, 0, 0, 0], [1, 0, 31, 0, 0], [2, 0, 0, 24, 0], [3, 0, 0, 0, 16]]
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 200
- num_epochs: 70
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | 0 Precision | 0 Recall | 0 F1-score | 0 Support | 1 Precision | 1 Recall | 1 F1-score | 1 Support | 2 Precision | 2 Recall | 2 F1-score | 2 Support | 3 Precision | 3 Recall | 3 F1-score | 3 Support | Accuracy | Macro avg Precision | Macro avg Recall | Macro avg F1-score | Macro avg Support | Weighted avg Precision | Weighted avg Recall | Weighted avg F1-score | Weighted avg Support | Wer | Mtrix |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
4.0755 | 4.16 | 100 | 3.4544 | 1.0 | 0.2963 | 0.4571 | 27 | 0.0 | 0.0 | 0.0 | 31 | 0.0 | 0.0 | 0.0 | 24 | 0.1778 | 1.0 | 0.3019 | 16 | 0.2449 | 0.2944 | 0.3241 | 0.1898 | 98 | 0.3045 | 0.2449 | 0.1752 | 98 | 0.9965 | [[0, 1, 2, 3], [0, 8, 0, 0, 19], [1, 0, 0, 0, 31], [2, 0, 0, 0, 24], [3, 0, 0, 0, 16]] |
3.3477 | 8.33 | 200 | 3.1963 | 1.0 | 0.2963 | 0.4571 | 27 | 0.0 | 0.0 | 0.0 | 31 | 0.0 | 0.0 | 0.0 | 24 | 0.1778 | 1.0 | 0.3019 | 16 | 0.2449 | 0.2944 | 0.3241 | 0.1898 | 98 | 0.3045 | 0.2449 | 0.1752 | 98 | 0.9965 | [[0, 1, 2, 3], [0, 8, 0, 0, 19], [1, 0, 0, 0, 31], [2, 0, 0, 0, 24], [3, 0, 0, 0, 16]] |
3.16 | 12.49 | 300 | 3.1744 | 1.0 | 0.2963 | 0.4571 | 27 | 0.0 | 0.0 | 0.0 | 31 | 0.0 | 0.0 | 0.0 | 24 | 0.1778 | 1.0 | 0.3019 | 16 | 0.2449 | 0.2944 | 0.3241 | 0.1898 | 98 | 0.3045 | 0.2449 | 0.1752 | 98 | 0.9965 | [[0, 1, 2, 3], [0, 8, 0, 0, 19], [1, 0, 0, 0, 31], [2, 0, 0, 0, 24], [3, 0, 0, 0, 16]] |
3.0366 | 16.65 | 400 | 3.0466 | 1.0 | 0.2963 | 0.4571 | 27 | 0.0 | 0.0 | 0.0 | 31 | 0.0 | 0.0 | 0.0 | 24 | 0.1778 | 1.0 | 0.3019 | 16 | 0.2449 | 0.2944 | 0.3241 | 0.1898 | 98 | 0.3045 | 0.2449 | 0.1752 | 98 | 0.9965 | [[0, 1, 2, 3], [0, 8, 0, 0, 19], [1, 0, 0, 0, 31], [2, 0, 0, 0, 24], [3, 0, 0, 0, 16]] |
2.6349 | 20.82 | 500 | 2.4959 | 0.6429 | 1.0 | 0.7826 | 27 | 0.5185 | 0.4516 | 0.4828 | 31 | 0.625 | 0.4167 | 0.5 | 24 | 0.9231 | 0.75 | 0.8276 | 16 | 0.6429 | 0.6774 | 0.6546 | 0.6482 | 98 | 0.6449 | 0.6429 | 0.6259 | 98 | 0.9809 | [[0, 1, 2, 3], [0, 27, 0, 0, 0], [1, 14, 14, 3, 0], [2, 1, 12, 10, 1], [3, 0, 1, 3, 12]] |
2.1268 | 24.98 | 600 | 2.0605 | 1.0 | 0.8148 | 0.8980 | 27 | 0.7188 | 0.7419 | 0.7302 | 31 | 0.6667 | 0.8333 | 0.7407 | 24 | 1.0 | 0.875 | 0.9333 | 16 | 0.8061 | 0.8464 | 0.8163 | 0.8255 | 98 | 0.8294 | 0.8061 | 0.8122 | 98 | 0.9729 | [[0, 1, 2, 3], [0, 22, 5, 0, 0], [1, 0, 23, 8, 0], [2, 0, 4, 20, 0], [3, 0, 0, 2, 14]] |
1.7548 | 29.16 | 700 | 1.5829 | 1.0 | 1.0 | 1.0 | 27 | 1.0 | 0.9355 | 0.9667 | 31 | 0.96 | 1.0 | 0.9796 | 24 | 0.9412 | 1.0 | 0.9697 | 16 | 0.9796 | 0.9753 | 0.9839 | 0.9790 | 98 | 0.9806 | 0.9796 | 0.9795 | 98 | 0.9413 | [[0, 1, 2, 3], [0, 27, 0, 0, 0], [1, 0, 29, 1, 1], [2, 0, 0, 24, 0], [3, 0, 0, 0, 16]] |
1.3546 | 33.33 | 800 | 1.1662 | 1.0 | 1.0 | 1.0 | 27 | 0.9688 | 1.0 | 0.9841 | 31 | 1.0 | 0.9583 | 0.9787 | 24 | 1.0 | 1.0 | 1.0 | 16 | 0.9898 | 0.9922 | 0.9896 | 0.9907 | 98 | 0.9901 | 0.9898 | 0.9898 | 98 | 0.8916 | [[0, 1, 2, 3], [0, 27, 0, 0, 0], [1, 0, 31, 0, 0], [2, 0, 1, 23, 0], [3, 0, 0, 0, 16]] |
0.8917 | 37.49 | 900 | 0.7394 | 1.0 | 0.9630 | 0.9811 | 27 | 0.9688 | 1.0 | 0.9841 | 31 | 1.0 | 1.0 | 1.0 | 24 | 1.0 | 1.0 | 1.0 | 16 | 0.9898 | 0.9922 | 0.9907 | 0.9913 | 98 | 0.9901 | 0.9898 | 0.9898 | 98 | 0.8323 | [[0, 1, 2, 3], [0, 26, 1, 0, 0], [1, 0, 31, 0, 0], [2, 0, 0, 24, 0], [3, 0, 0, 0, 16]] |
0.5059 | 41.65 | 1000 | 0.4234 | 1.0 | 1.0 | 1.0 | 27 | 1.0 | 0.9677 | 0.9836 | 31 | 0.96 | 1.0 | 0.9796 | 24 | 1.0 | 1.0 | 1.0 | 16 | 0.9898 | 0.99 | 0.9919 | 0.9908 | 98 | 0.9902 | 0.9898 | 0.9898 | 98 | 0.4814 | [[0, 1, 2, 3], [0, 27, 0, 0, 0], [1, 0, 30, 1, 0], [2, 0, 0, 24, 0], [3, 0, 0, 0, 16]] |
0.2618 | 45.82 | 1100 | 0.1749 | 1.0 | 1.0 | 1.0 | 27 | 1.0 | 0.9677 | 0.9836 | 31 | 0.96 | 1.0 | 0.9796 | 24 | 1.0 | 1.0 | 1.0 | 16 | 0.9898 | 0.99 | 0.9919 | 0.9908 | 98 | 0.9902 | 0.9898 | 0.9898 | 98 | 0.1576 | [[0, 1, 2, 3], [0, 27, 0, 0, 0], [1, 0, 30, 1, 0], [2, 0, 0, 24, 0], [3, 0, 0, 0, 16]] |
0.126 | 49.98 | 1200 | 0.1227 | 1.0 | 1.0 | 1.0 | 27 | 1.0 | 0.9355 | 0.9667 | 31 | 0.96 | 1.0 | 0.9796 | 24 | 0.9412 | 1.0 | 0.9697 | 16 | 0.9796 | 0.9753 | 0.9839 | 0.9790 | 98 | 0.9806 | 0.9796 | 0.9795 | 98 | 0.0989 | [[0, 1, 2, 3], [0, 27, 0, 0, 0], [1, 0, 29, 1, 1], [2, 0, 0, 24, 0], [3, 0, 0, 0, 16]] |
0.1138 | 54.16 | 1300 | 0.0469 | 1.0 | 1.0 | 1.0 | 27 | 1.0 | 1.0 | 1.0 | 31 | 1.0 | 1.0 | 1.0 | 24 | 1.0 | 1.0 | 1.0 | 16 | 1.0 | 1.0 | 1.0 | 1.0 | 98 | 1.0 | 1.0 | 1.0 | 98 | 0.0693 | [[0, 1, 2, 3], [0, 27, 0, 0, 0], [1, 0, 31, 0, 0], [2, 0, 0, 24, 0], [3, 0, 0, 0, 16]] |
0.0675 | 58.33 | 1400 | 0.0397 | 1.0 | 1.0 | 1.0 | 27 | 1.0 | 1.0 | 1.0 | 31 | 1.0 | 1.0 | 1.0 | 24 | 1.0 | 1.0 | 1.0 | 16 | 1.0 | 1.0 | 1.0 | 1.0 | 98 | 1.0 | 1.0 | 1.0 | 98 | 0.0658 | [[0, 1, 2, 3], [0, 27, 0, 0, 0], [1, 0, 31, 0, 0], [2, 0, 0, 24, 0], [3, 0, 0, 0, 16]] |
0.0462 | 62.49 | 1500 | 0.0333 | 1.0 | 1.0 | 1.0 | 27 | 1.0 | 1.0 | 1.0 | 31 | 1.0 | 1.0 | 1.0 | 24 | 1.0 | 1.0 | 1.0 | 16 | 1.0 | 1.0 | 1.0 | 1.0 | 98 | 1.0 | 1.0 | 1.0 | 98 | 0.0612 | [[0, 1, 2, 3], [0, 27, 0, 0, 0], [1, 0, 31, 0, 0], [2, 0, 0, 24, 0], [3, 0, 0, 0, 16]] |
0.0359 | 66.65 | 1600 | 0.0340 | 1.0 | 1.0 | 1.0 | 27 | 1.0 | 1.0 | 1.0 | 31 | 1.0 | 1.0 | 1.0 | 24 | 1.0 | 1.0 | 1.0 | 16 | 1.0 | 1.0 | 1.0 | 1.0 | 98 | 1.0 | 1.0 | 1.0 | 98 | 0.0612 | [[0, 1, 2, 3], [0, 27, 0, 0, 0], [1, 0, 31, 0, 0], [2, 0, 0, 24, 0], [3, 0, 0, 0, 16]] |
Framework versions
- Transformers 4.25.1
- Pytorch 1.13.0+cu116
- Datasets 2.8.0
- Tokenizers 0.13.2