generated_from_trainer

<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->

model_phoneme_onSet0.0

This model is a fine-tuned version of facebook/wav2vec2-large-xlsr-53 on the None dataset. It achieves the following results on the evaluation set:

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

Training results

Training Loss Epoch Step Validation Loss 0 Precision 0 Recall 0 F1-score 0 Support 1 Precision 1 Recall 1 F1-score 1 Support 2 Precision 2 Recall 2 F1-score 2 Support 3 Precision 3 Recall 3 F1-score 3 Support Accuracy Macro avg Precision Macro avg Recall Macro avg F1-score Macro avg Support Weighted avg Precision Weighted avg Recall Weighted avg F1-score Weighted avg Support Wer Mtrix
4.0755 4.16 100 3.4544 1.0 0.2963 0.4571 27 0.0 0.0 0.0 31 0.0 0.0 0.0 24 0.1778 1.0 0.3019 16 0.2449 0.2944 0.3241 0.1898 98 0.3045 0.2449 0.1752 98 0.9965 [[0, 1, 2, 3], [0, 8, 0, 0, 19], [1, 0, 0, 0, 31], [2, 0, 0, 0, 24], [3, 0, 0, 0, 16]]
3.3477 8.33 200 3.1963 1.0 0.2963 0.4571 27 0.0 0.0 0.0 31 0.0 0.0 0.0 24 0.1778 1.0 0.3019 16 0.2449 0.2944 0.3241 0.1898 98 0.3045 0.2449 0.1752 98 0.9965 [[0, 1, 2, 3], [0, 8, 0, 0, 19], [1, 0, 0, 0, 31], [2, 0, 0, 0, 24], [3, 0, 0, 0, 16]]
3.16 12.49 300 3.1744 1.0 0.2963 0.4571 27 0.0 0.0 0.0 31 0.0 0.0 0.0 24 0.1778 1.0 0.3019 16 0.2449 0.2944 0.3241 0.1898 98 0.3045 0.2449 0.1752 98 0.9965 [[0, 1, 2, 3], [0, 8, 0, 0, 19], [1, 0, 0, 0, 31], [2, 0, 0, 0, 24], [3, 0, 0, 0, 16]]
3.0366 16.65 400 3.0466 1.0 0.2963 0.4571 27 0.0 0.0 0.0 31 0.0 0.0 0.0 24 0.1778 1.0 0.3019 16 0.2449 0.2944 0.3241 0.1898 98 0.3045 0.2449 0.1752 98 0.9965 [[0, 1, 2, 3], [0, 8, 0, 0, 19], [1, 0, 0, 0, 31], [2, 0, 0, 0, 24], [3, 0, 0, 0, 16]]
2.6349 20.82 500 2.4959 0.6429 1.0 0.7826 27 0.5185 0.4516 0.4828 31 0.625 0.4167 0.5 24 0.9231 0.75 0.8276 16 0.6429 0.6774 0.6546 0.6482 98 0.6449 0.6429 0.6259 98 0.9809 [[0, 1, 2, 3], [0, 27, 0, 0, 0], [1, 14, 14, 3, 0], [2, 1, 12, 10, 1], [3, 0, 1, 3, 12]]
2.1268 24.98 600 2.0605 1.0 0.8148 0.8980 27 0.7188 0.7419 0.7302 31 0.6667 0.8333 0.7407 24 1.0 0.875 0.9333 16 0.8061 0.8464 0.8163 0.8255 98 0.8294 0.8061 0.8122 98 0.9729 [[0, 1, 2, 3], [0, 22, 5, 0, 0], [1, 0, 23, 8, 0], [2, 0, 4, 20, 0], [3, 0, 0, 2, 14]]
1.7548 29.16 700 1.5829 1.0 1.0 1.0 27 1.0 0.9355 0.9667 31 0.96 1.0 0.9796 24 0.9412 1.0 0.9697 16 0.9796 0.9753 0.9839 0.9790 98 0.9806 0.9796 0.9795 98 0.9413 [[0, 1, 2, 3], [0, 27, 0, 0, 0], [1, 0, 29, 1, 1], [2, 0, 0, 24, 0], [3, 0, 0, 0, 16]]
1.3546 33.33 800 1.1662 1.0 1.0 1.0 27 0.9688 1.0 0.9841 31 1.0 0.9583 0.9787 24 1.0 1.0 1.0 16 0.9898 0.9922 0.9896 0.9907 98 0.9901 0.9898 0.9898 98 0.8916 [[0, 1, 2, 3], [0, 27, 0, 0, 0], [1, 0, 31, 0, 0], [2, 0, 1, 23, 0], [3, 0, 0, 0, 16]]
0.8917 37.49 900 0.7394 1.0 0.9630 0.9811 27 0.9688 1.0 0.9841 31 1.0 1.0 1.0 24 1.0 1.0 1.0 16 0.9898 0.9922 0.9907 0.9913 98 0.9901 0.9898 0.9898 98 0.8323 [[0, 1, 2, 3], [0, 26, 1, 0, 0], [1, 0, 31, 0, 0], [2, 0, 0, 24, 0], [3, 0, 0, 0, 16]]
0.5059 41.65 1000 0.4234 1.0 1.0 1.0 27 1.0 0.9677 0.9836 31 0.96 1.0 0.9796 24 1.0 1.0 1.0 16 0.9898 0.99 0.9919 0.9908 98 0.9902 0.9898 0.9898 98 0.4814 [[0, 1, 2, 3], [0, 27, 0, 0, 0], [1, 0, 30, 1, 0], [2, 0, 0, 24, 0], [3, 0, 0, 0, 16]]
0.2618 45.82 1100 0.1749 1.0 1.0 1.0 27 1.0 0.9677 0.9836 31 0.96 1.0 0.9796 24 1.0 1.0 1.0 16 0.9898 0.99 0.9919 0.9908 98 0.9902 0.9898 0.9898 98 0.1576 [[0, 1, 2, 3], [0, 27, 0, 0, 0], [1, 0, 30, 1, 0], [2, 0, 0, 24, 0], [3, 0, 0, 0, 16]]
0.126 49.98 1200 0.1227 1.0 1.0 1.0 27 1.0 0.9355 0.9667 31 0.96 1.0 0.9796 24 0.9412 1.0 0.9697 16 0.9796 0.9753 0.9839 0.9790 98 0.9806 0.9796 0.9795 98 0.0989 [[0, 1, 2, 3], [0, 27, 0, 0, 0], [1, 0, 29, 1, 1], [2, 0, 0, 24, 0], [3, 0, 0, 0, 16]]
0.1138 54.16 1300 0.0469 1.0 1.0 1.0 27 1.0 1.0 1.0 31 1.0 1.0 1.0 24 1.0 1.0 1.0 16 1.0 1.0 1.0 1.0 98 1.0 1.0 1.0 98 0.0693 [[0, 1, 2, 3], [0, 27, 0, 0, 0], [1, 0, 31, 0, 0], [2, 0, 0, 24, 0], [3, 0, 0, 0, 16]]
0.0675 58.33 1400 0.0397 1.0 1.0 1.0 27 1.0 1.0 1.0 31 1.0 1.0 1.0 24 1.0 1.0 1.0 16 1.0 1.0 1.0 1.0 98 1.0 1.0 1.0 98 0.0658 [[0, 1, 2, 3], [0, 27, 0, 0, 0], [1, 0, 31, 0, 0], [2, 0, 0, 24, 0], [3, 0, 0, 0, 16]]
0.0462 62.49 1500 0.0333 1.0 1.0 1.0 27 1.0 1.0 1.0 31 1.0 1.0 1.0 24 1.0 1.0 1.0 16 1.0 1.0 1.0 1.0 98 1.0 1.0 1.0 98 0.0612 [[0, 1, 2, 3], [0, 27, 0, 0, 0], [1, 0, 31, 0, 0], [2, 0, 0, 24, 0], [3, 0, 0, 0, 16]]
0.0359 66.65 1600 0.0340 1.0 1.0 1.0 27 1.0 1.0 1.0 31 1.0 1.0 1.0 24 1.0 1.0 1.0 16 1.0 1.0 1.0 1.0 98 1.0 1.0 1.0 98 0.0612 [[0, 1, 2, 3], [0, 27, 0, 0, 0], [1, 0, 31, 0, 0], [2, 0, 0, 24, 0], [3, 0, 0, 0, 16]]

Framework versions