questions and answers generation

Model Card of lmqg/mbart-large-cc25-dequad-qag

This model is fine-tuned version of facebook/mbart-large-cc25 for question & answer pair generation task on the lmqg/qag_dequad (dataset_name: default) via lmqg.

Overview

Usage

from lmqg import TransformersQG

# initialize model
model = TransformersQG(language="de", model="lmqg/mbart-large-cc25-dequad-qag")

# model prediction
question_answer_pairs = model.generate_qa("das erste weltweit errichtete Hermann Brehmer 1855 im niederschlesischen ''Görbersdorf'' (heute Sokołowsko, Polen).")

from transformers import pipeline

pipe = pipeline("text2text-generation", "lmqg/mbart-large-cc25-dequad-qag")
output = pipe("Empfangs- und Sendeantenne sollen in ihrer Polarisation übereinstimmen, andernfalls wird die Signalübertragung stark gedämpft. ")

Evaluation

Score Type Dataset
QAAlignedF1Score (BERTScore) 69.25 default lmqg/qag_dequad
QAAlignedF1Score (MoverScore) 50.71 default lmqg/qag_dequad
QAAlignedPrecision (BERTScore) 70.69 default lmqg/qag_dequad
QAAlignedPrecision (MoverScore) 51.81 default lmqg/qag_dequad
QAAlignedRecall (BERTScore) 68.05 default lmqg/qag_dequad
QAAlignedRecall (MoverScore) 49.78 default lmqg/qag_dequad

Training hyperparameters

The following hyperparameters were used during fine-tuning:

The full configuration can be found at fine-tuning config file.

Citation

@inproceedings{ushio-etal-2022-generative,
    title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
    author = "Ushio, Asahi  and
        Alva-Manchego, Fernando  and
        Camacho-Collados, Jose",
    booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
    month = dec,
    year = "2022",
    address = "Abu Dhabi, U.A.E.",
    publisher = "Association for Computational Linguistics",
}