Model Card of lmqg/mbart-large-cc25-frquad-qag
This model is fine-tuned version of facebook/mbart-large-cc25 for question & answer pair generation task on the lmqg/qag_frquad (dataset_name: default) via lmqg.
Overview
- Language model: facebook/mbart-large-cc25
- Language: fr
- Training data: lmqg/qag_frquad (default)
- Online Demo: https://autoqg.net/
- Repository: https://github.com/asahi417/lm-question-generation
- Paper: https://arxiv.org/abs/2210.03992
Usage
- With lmqg
from lmqg import TransformersQG
# initialize model
model = TransformersQG(language="fr", model="lmqg/mbart-large-cc25-frquad-qag")
# model prediction
question_answer_pairs = model.generate_qa("Créateur » (Maker), lui aussi au singulier, « le Suprême Berger » (The Great Shepherd) ; de l'autre, des réminiscences de la théologie de l'Antiquité : le tonnerre, voix de Jupiter, « Et souvent ta voix gronde en un tonnerre terrifiant », etc.")
- With transformers
from transformers import pipeline
pipe = pipeline("text2text-generation", "lmqg/mbart-large-cc25-frquad-qag")
output = pipe("Créateur » (Maker), lui aussi au singulier, « le Suprême Berger » (The Great Shepherd) ; de l'autre, des réminiscences de la théologie de l'Antiquité : le tonnerre, voix de Jupiter, « Et souvent ta voix gronde en un tonnerre terrifiant », etc.")
Evaluation
- Metric (Question & Answer Generation): raw metric file
| Score | Type | Dataset | |
|---|---|---|---|
| QAAlignedF1Score (BERTScore) | 77.75 | default | lmqg/qag_frquad | 
| QAAlignedF1Score (MoverScore) | 53.5 | default | lmqg/qag_frquad | 
| QAAlignedPrecision (BERTScore) | 76.19 | default | lmqg/qag_frquad | 
| QAAlignedPrecision (MoverScore) | 52.57 | default | lmqg/qag_frquad | 
| QAAlignedRecall (BERTScore) | 79.45 | default | lmqg/qag_frquad | 
| QAAlignedRecall (MoverScore) | 54.55 | default | lmqg/qag_frquad | 
Training hyperparameters
The following hyperparameters were used during fine-tuning:
- dataset_path: lmqg/qag_frquad
- dataset_name: default
- input_types: ['paragraph']
- output_types: ['questions_answers']
- prefix_types: None
- model: facebook/mbart-large-cc25
- max_length: 512
- max_length_output: 256
- epoch: 14
- batch: 2
- lr: 0.0001
- fp16: False
- random_seed: 1
- gradient_accumulation_steps: 64
- label_smoothing: 0.0
The full configuration can be found at fine-tuning config file.
Citation
@inproceedings{ushio-etal-2022-generative,
    title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
    author = "Ushio, Asahi  and
        Alva-Manchego, Fernando  and
        Camacho-Collados, Jose",
    booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
    month = dec,
    year = "2022",
    address = "Abu Dhabi, U.A.E.",
    publisher = "Association for Computational Linguistics",
}
 
       
      