<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->
tiny-mlm-glue-cola-target-glue-qqp
This model is a fine-tuned version of muhtasham/tiny-mlm-glue-cola on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.4140
- Accuracy: 0.7961
- F1: 0.7697
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- num_epochs: 200
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
---|---|---|---|---|---|
0.577 | 0.04 | 500 | 0.5181 | 0.7291 | 0.6837 |
0.5091 | 0.09 | 1000 | 0.4833 | 0.7514 | 0.7040 |
0.4964 | 0.13 | 1500 | 0.4910 | 0.7406 | 0.7144 |
0.4802 | 0.18 | 2000 | 0.4696 | 0.7531 | 0.7215 |
0.4728 | 0.22 | 2500 | 0.4583 | 0.7611 | 0.7271 |
0.4564 | 0.26 | 3000 | 0.4486 | 0.7685 | 0.7345 |
0.4575 | 0.31 | 3500 | 0.4472 | 0.7684 | 0.7371 |
0.4509 | 0.35 | 4000 | 0.4492 | 0.7663 | 0.7387 |
0.4511 | 0.4 | 4500 | 0.4417 | 0.7714 | 0.7430 |
0.4414 | 0.44 | 5000 | 0.4206 | 0.7894 | 0.7496 |
0.4295 | 0.48 | 5500 | 0.4274 | 0.7840 | 0.7511 |
0.4299 | 0.53 | 6000 | 0.4077 | 0.8008 | 0.7573 |
0.425 | 0.57 | 6500 | 0.4201 | 0.7908 | 0.7569 |
0.4259 | 0.62 | 7000 | 0.4052 | 0.8015 | 0.7594 |
0.4169 | 0.66 | 7500 | 0.4056 | 0.8046 | 0.7649 |
0.4305 | 0.7 | 8000 | 0.4115 | 0.7964 | 0.7619 |
0.4205 | 0.75 | 8500 | 0.3985 | 0.8054 | 0.7662 |
0.4152 | 0.79 | 9000 | 0.4183 | 0.7902 | 0.7618 |
0.4116 | 0.84 | 9500 | 0.3910 | 0.8103 | 0.7677 |
0.4136 | 0.88 | 10000 | 0.3874 | 0.8141 | 0.7710 |
0.4089 | 0.92 | 10500 | 0.3835 | 0.8155 | 0.7704 |
0.4085 | 0.97 | 11000 | 0.3847 | 0.8165 | 0.7718 |
0.4064 | 1.01 | 11500 | 0.4045 | 0.8005 | 0.7689 |
0.3857 | 1.06 | 12000 | 0.3823 | 0.8172 | 0.7746 |
0.3952 | 1.1 | 12500 | 0.3841 | 0.8144 | 0.7762 |
0.383 | 1.14 | 13000 | 0.3898 | 0.8124 | 0.7753 |
0.3724 | 1.19 | 13500 | 0.4140 | 0.7961 | 0.7697 |
Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.0+cu116
- Datasets 2.8.1.dev0
- Tokenizers 0.13.2