text-classification

Hungarian Aspect-based Sentiment Analysis with finetuned huBERT model

For further models, scripts and details, see our repository or our demo site.

Limitations

Results

Model OHB
huBERT 82.30
XLM-R 80.59

Usage with pipeline

from transformers import pipeline

classification = pipeline(task="sentiment-analysis", model="NYTK/sentiment-ohb3-hubert-hungarian")
input_text = "Kovácsné Nagy Erzsébet [SEP] A Kovácsné Nagy Erzsébet nagyon jól érzi magát a Nokiánál, azonban a Németországból érkezett Kovács Péter nehezen boldogul a beilleszkedéssel."

print(classification(input_text)[0])

Citation

If you use this model, please cite the following paper:

@inproceedings {yang-asent,
    title = {Neurális entitásorientált szentimentelemző alkalmazás magyar nyelvre},
	booktitle = {XIX. Magyar Számítógépes Nyelvészeti Konferencia (MSZNY 2023)},
	year = {2023},
	publisher = {Szegedi Tudományegyetem, Informatikai Intézet},
	address = {Szeged, Hungary},
	author = {Yang, Zijian Győző and Laki, László János},
	pages = {107--117}
}