<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->
tiny-mlm-glue-qqp-target-glue-qqp
This model is a fine-tuned version of muhtasham/tiny-mlm-glue-qqp on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.3945
- Accuracy: 0.8081
- F1: 0.7763
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- num_epochs: 200
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
---|---|---|---|---|---|
0.5728 | 0.04 | 500 | 0.5077 | 0.7372 | 0.6832 |
0.5018 | 0.09 | 1000 | 0.4737 | 0.7587 | 0.6993 |
0.4915 | 0.13 | 1500 | 0.4739 | 0.7557 | 0.7192 |
0.4748 | 0.18 | 2000 | 0.4528 | 0.7665 | 0.7234 |
0.4699 | 0.22 | 2500 | 0.4430 | 0.7738 | 0.7303 |
0.4528 | 0.26 | 3000 | 0.4336 | 0.7811 | 0.7379 |
0.4548 | 0.31 | 3500 | 0.4330 | 0.7785 | 0.7392 |
0.4466 | 0.35 | 4000 | 0.4314 | 0.7798 | 0.7431 |
0.4463 | 0.4 | 4500 | 0.4276 | 0.7846 | 0.7489 |
0.4379 | 0.44 | 5000 | 0.4106 | 0.7971 | 0.7493 |
0.4262 | 0.48 | 5500 | 0.4159 | 0.7930 | 0.7550 |
0.4272 | 0.53 | 6000 | 0.3997 | 0.8068 | 0.7579 |
0.4215 | 0.57 | 6500 | 0.4072 | 0.7995 | 0.7590 |
0.4234 | 0.62 | 7000 | 0.3957 | 0.8095 | 0.7603 |
0.4147 | 0.66 | 7500 | 0.3968 | 0.8102 | 0.7639 |
0.4293 | 0.7 | 8000 | 0.4016 | 0.8045 | 0.7654 |
0.4181 | 0.75 | 8500 | 0.3888 | 0.8121 | 0.7667 |
0.4121 | 0.79 | 9000 | 0.4029 | 0.8024 | 0.7681 |
0.4097 | 0.84 | 9500 | 0.3838 | 0.8165 | 0.7681 |
0.4118 | 0.88 | 10000 | 0.3792 | 0.8201 | 0.7702 |
0.4075 | 0.92 | 10500 | 0.3780 | 0.8199 | 0.7717 |
0.4058 | 0.97 | 11000 | 0.3770 | 0.8226 | 0.7712 |
0.4037 | 1.01 | 11500 | 0.3891 | 0.8131 | 0.7762 |
0.3828 | 1.06 | 12000 | 0.3746 | 0.8241 | 0.7738 |
0.3936 | 1.1 | 12500 | 0.3770 | 0.8211 | 0.7801 |
0.3823 | 1.14 | 13000 | 0.3761 | 0.8213 | 0.7782 |
0.371 | 1.19 | 13500 | 0.3945 | 0.8081 | 0.7763 |
Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.0+cu116
- Datasets 2.8.1.dev0
- Tokenizers 0.13.2