<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->
tiny-mlm-glue-rte-target-glue-mnli
This model is a fine-tuned version of muhtasham/tiny-mlm-glue-rte on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.7947
- Accuracy: 0.6475
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- num_epochs: 200
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
1.0719 | 0.04 | 500 | 1.0318 | 0.4653 |
1.0131 | 0.08 | 1000 | 0.9779 | 0.5247 |
0.9748 | 0.12 | 1500 | 0.9293 | 0.5769 |
0.9415 | 0.16 | 2000 | 0.9073 | 0.5893 |
0.9255 | 0.2 | 2500 | 0.8888 | 0.6011 |
0.9168 | 0.24 | 3000 | 0.8789 | 0.6042 |
0.8998 | 0.29 | 3500 | 0.8704 | 0.6077 |
0.8948 | 0.33 | 4000 | 0.8624 | 0.6114 |
0.8791 | 0.37 | 4500 | 0.8571 | 0.6176 |
0.8832 | 0.41 | 5000 | 0.8501 | 0.6192 |
0.8742 | 0.45 | 5500 | 0.8423 | 0.6247 |
0.87 | 0.49 | 6000 | 0.8410 | 0.6280 |
0.874 | 0.53 | 6500 | 0.8322 | 0.6328 |
0.8623 | 0.57 | 7000 | 0.8342 | 0.6296 |
0.8563 | 0.61 | 7500 | 0.8192 | 0.6394 |
0.8562 | 0.65 | 8000 | 0.8194 | 0.6367 |
0.8504 | 0.69 | 8500 | 0.8284 | 0.6327 |
0.8519 | 0.73 | 9000 | 0.8044 | 0.6424 |
0.8436 | 0.77 | 9500 | 0.8175 | 0.6354 |
0.8349 | 0.81 | 10000 | 0.8015 | 0.6438 |
0.8372 | 0.86 | 10500 | 0.8094 | 0.6368 |
0.835 | 0.9 | 11000 | 0.7958 | 0.6469 |
0.8291 | 0.94 | 11500 | 0.7922 | 0.6479 |
0.8274 | 0.98 | 12000 | 0.7938 | 0.6449 |
0.8158 | 1.02 | 12500 | 0.7971 | 0.6450 |
0.8111 | 1.06 | 13000 | 0.7947 | 0.6475 |
Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.0+cu116
- Datasets 2.8.1.dev0
- Tokenizers 0.13.2