Model Card of lmqg/bart-base-squad-qg
This model is fine-tuned version of facebook/bart-base for question generation task on the lmqg/qg_squad (dataset_name: default) via lmqg
.
Overview
- Language model: facebook/bart-base
- Language: en
- Training data: lmqg/qg_squad (default)
- Online Demo: https://autoqg.net/
- Repository: https://github.com/asahi417/lm-question-generation
- Paper: https://arxiv.org/abs/2210.03992
Usage
- With
lmqg
from lmqg import TransformersQG
# initialize model
model = TransformersQG(language="en", model="lmqg/bart-base-squad-qg")
# model prediction
questions = model.generate_q(list_context="William Turner was an English painter who specialised in watercolour landscapes", list_answer="William Turner")
- With
transformers
from transformers import pipeline
pipe = pipeline("text2text-generation", "lmqg/bart-base-squad-qg")
output = pipe("<hl> Beyonce <hl> further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, Cadillac Records.")
Evaluation
- Metric (Question Generation): raw metric file
Score | Type | Dataset | |
---|---|---|---|
BERTScore | 90.87 | default | lmqg/qg_squad |
Bleu_1 | 56.92 | default | lmqg/qg_squad |
Bleu_2 | 40.98 | default | lmqg/qg_squad |
Bleu_3 | 31.44 | default | lmqg/qg_squad |
Bleu_4 | 24.68 | default | lmqg/qg_squad |
METEOR | 26.05 | default | lmqg/qg_squad |
MoverScore | 64.47 | default | lmqg/qg_squad |
ROUGE_L | 52.66 | default | lmqg/qg_squad |
- Metric (Question & Answer Generation, Reference Answer): Each question is generated from the gold answer. raw metric file
Score | Type | Dataset | |
---|---|---|---|
QAAlignedF1Score (BERTScore) | 95.49 | default | lmqg/qg_squad |
QAAlignedF1Score (MoverScore) | 70.38 | default | lmqg/qg_squad |
QAAlignedPrecision (BERTScore) | 95.55 | default | lmqg/qg_squad |
QAAlignedPrecision (MoverScore) | 70.67 | default | lmqg/qg_squad |
QAAlignedRecall (BERTScore) | 95.44 | default | lmqg/qg_squad |
QAAlignedRecall (MoverScore) | 70.1 | default | lmqg/qg_squad |
- Metric (Question & Answer Generation, Pipeline Approach): Each question is generated on the answer generated by
lmqg/bart-base-squad-ae
. raw metric file
Score | Type | Dataset | |
---|---|---|---|
QAAlignedF1Score (BERTScore) | 92.84 | default | lmqg/qg_squad |
QAAlignedF1Score (MoverScore) | 64.24 | default | lmqg/qg_squad |
QAAlignedPrecision (BERTScore) | 92.75 | default | lmqg/qg_squad |
QAAlignedPrecision (MoverScore) | 64.46 | default | lmqg/qg_squad |
QAAlignedRecall (BERTScore) | 92.95 | default | lmqg/qg_squad |
QAAlignedRecall (MoverScore) | 64.11 | default | lmqg/qg_squad |
- Metrics (Question Generation, Out-of-Domain)
Dataset | Type | BERTScore | Bleu_4 | METEOR | MoverScore | ROUGE_L | Link |
---|---|---|---|---|---|---|---|
lmqg/qg_squadshifts | amazon | 90.49 | 5.82 | 21.27 | 60.27 | 23.82 | link |
lmqg/qg_squadshifts | new_wiki | 93.07 | 10.73 | 26.23 | 65.67 | 28.44 | link |
lmqg/qg_squadshifts | nyt | 92.36 | 7.65 | 24.43 | 63.69 | 23.9 | link |
lmqg/qg_squadshifts | 90.57 | 5.38 | 20.4 | 60.14 | 21.41 | link | |
lmqg/qg_subjqa | books | 87.75 | 0.0 | 11.52 | 55.21 | 10.77 | link |
lmqg/qg_subjqa | electronics | 87.6 | 0.0 | 14.87 | 56.07 | 14.29 | link |
lmqg/qg_subjqa | grocery | 87.38 | 0.6 | 15.53 | 56.63 | 12.49 | link |
lmqg/qg_subjqa | movies | 87.73 | 1.08 | 12.86 | 55.55 | 13.9 | link |
lmqg/qg_subjqa | restaurants | 87.71 | 0.0 | 11.47 | 54.91 | 12.16 | link |
lmqg/qg_subjqa | tripadvisor | 88.78 | 1.02 | 13.92 | 55.91 | 13.41 | link |
Training hyperparameters
The following hyperparameters were used during fine-tuning:
- dataset_path: lmqg/qg_squad
- dataset_name: default
- input_types: ['paragraph_answer']
- output_types: ['question']
- prefix_types: None
- model: facebook/bart-base
- max_length: 512
- max_length_output: 32
- epoch: 7
- batch: 32
- lr: 0.0001
- fp16: False
- random_seed: 1
- gradient_accumulation_steps: 8
- label_smoothing: 0.15
The full configuration can be found at fine-tuning config file.
Citation
@inproceedings{ushio-etal-2022-generative,
title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
author = "Ushio, Asahi and
Alva-Manchego, Fernando and
Camacho-Collados, Jose",
booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
month = dec,
year = "2022",
address = "Abu Dhabi, U.A.E.",
publisher = "Association for Computational Linguistics",
}