Model Card of lmqg/bart-large-squad-qg
This model is fine-tuned version of facebook/bart-large for question generation task on the lmqg/qg_squad (dataset_name: default) via lmqg
.
Overview
- Language model: facebook/bart-large
- Language: en
- Training data: lmqg/qg_squad (default)
- Online Demo: https://autoqg.net/
- Repository: https://github.com/asahi417/lm-question-generation
- Paper: https://arxiv.org/abs/2210.03992
Usage
- With
lmqg
from lmqg import TransformersQG
# initialize model
model = TransformersQG(language="en", model="lmqg/bart-large-squad-qg")
# model prediction
questions = model.generate_q(list_context="William Turner was an English painter who specialised in watercolour landscapes", list_answer="William Turner")
- With
transformers
from transformers import pipeline
pipe = pipeline("text2text-generation", "lmqg/bart-large-squad-qg")
output = pipe("<hl> Beyonce <hl> further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, Cadillac Records.")
Evaluation
- Metric (Question Generation): raw metric file
Score | Type | Dataset | |
---|---|---|---|
BERTScore | 91 | default | lmqg/qg_squad |
Bleu_1 | 58.79 | default | lmqg/qg_squad |
Bleu_2 | 42.79 | default | lmqg/qg_squad |
Bleu_3 | 33.11 | default | lmqg/qg_squad |
Bleu_4 | 26.17 | default | lmqg/qg_squad |
METEOR | 27.07 | default | lmqg/qg_squad |
MoverScore | 64.99 | default | lmqg/qg_squad |
ROUGE_L | 53.85 | default | lmqg/qg_squad |
- Metric (Question & Answer Generation, Reference Answer): Each question is generated from the gold answer. raw metric file
Score | Type | Dataset | |
---|---|---|---|
QAAlignedF1Score (BERTScore) | 95.54 | default | lmqg/qg_squad |
QAAlignedF1Score (MoverScore) | 70.82 | default | lmqg/qg_squad |
QAAlignedPrecision (BERTScore) | 95.59 | default | lmqg/qg_squad |
QAAlignedPrecision (MoverScore) | 71.13 | default | lmqg/qg_squad |
QAAlignedRecall (BERTScore) | 95.49 | default | lmqg/qg_squad |
QAAlignedRecall (MoverScore) | 70.54 | default | lmqg/qg_squad |
- Metric (Question & Answer Generation, Pipeline Approach): Each question is generated on the answer generated by
lmqg/bart-large-squad-ae
. raw metric file
Score | Type | Dataset | |
---|---|---|---|
QAAlignedF1Score (BERTScore) | 93.23 | default | lmqg/qg_squad |
QAAlignedF1Score (MoverScore) | 64.76 | default | lmqg/qg_squad |
QAAlignedPrecision (BERTScore) | 93.13 | default | lmqg/qg_squad |
QAAlignedPrecision (MoverScore) | 64.98 | default | lmqg/qg_squad |
QAAlignedRecall (BERTScore) | 93.35 | default | lmqg/qg_squad |
QAAlignedRecall (MoverScore) | 64.63 | default | lmqg/qg_squad |
- Metrics (Question Generation, Out-of-Domain)
Dataset | Type | BERTScore | Bleu_4 | METEOR | MoverScore | ROUGE_L | Link |
---|---|---|---|---|---|---|---|
lmqg/qg_squadshifts | amazon | 90.93 | 6.53 | 22.3 | 60.87 | 25.03 | link |
lmqg/qg_squadshifts | new_wiki | 93.23 | 11.12 | 27.32 | 66.23 | 29.68 | link |
lmqg/qg_squadshifts | nyt | 92.49 | 8.12 | 25.25 | 64.06 | 25.29 | link |
lmqg/qg_squadshifts | 90.95 | 5.95 | 21.5 | 60.59 | 22.37 | link | |
lmqg/qg_subjqa | books | 88.07 | 0.63 | 11.58 | 55.56 | 12.37 | link |
lmqg/qg_subjqa | electronics | 87.83 | 0.87 | 15.35 | 56.35 | 16.02 | link |
lmqg/qg_subjqa | grocery | 87.79 | 0.53 | 15.13 | 57.02 | 12.34 | link |
lmqg/qg_subjqa | movies | 87.49 | 0.0 | 11.86 | 55.29 | 12.51 | link |
lmqg/qg_subjqa | restaurants | 87.98 | 0.0 | 12.42 | 55.43 | 13.08 | link |
lmqg/qg_subjqa | tripadvisor | 88.91 | 0.0 | 13.72 | 56.05 | 14.03 | link |
Training hyperparameters
The following hyperparameters were used during fine-tuning:
- dataset_path: lmqg/qg_squad
- dataset_name: default
- input_types: ['paragraph_answer']
- output_types: ['question']
- prefix_types: None
- model: facebook/bart-large
- max_length: 512
- max_length_output: 32
- epoch: 4
- batch: 32
- lr: 5e-05
- fp16: False
- random_seed: 1
- gradient_accumulation_steps: 4
- label_smoothing: 0.15
The full configuration can be found at fine-tuning config file.
Citation
@inproceedings{ushio-etal-2022-generative,
title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
author = "Ushio, Asahi and
Alva-Manchego, Fernando and
Camacho-Collados, Jose",
booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
month = dec,
year = "2022",
address = "Abu Dhabi, U.A.E.",
publisher = "Association for Computational Linguistics",
}