<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->
model_from_berturk_1401_v3
This model is a fine-tuned version of dbmdz/bert-base-turkish-cased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.4042
- Precision: 0.8896
- Recall: 0.8841
- F1: 0.8868
- Accuracy: 0.9198
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 1.0 | 244 | 0.3948 | 0.8565 | 0.8508 | 0.8536 | 0.8932 |
No log | 2.0 | 488 | 0.3331 | 0.8724 | 0.8663 | 0.8693 | 0.9060 |
0.6019 | 3.0 | 732 | 0.3061 | 0.8855 | 0.8746 | 0.8800 | 0.9147 |
0.6019 | 4.0 | 976 | 0.3025 | 0.8881 | 0.8828 | 0.8855 | 0.9177 |
0.2753 | 5.0 | 1220 | 0.3137 | 0.8807 | 0.8819 | 0.8813 | 0.9148 |
0.2753 | 6.0 | 1464 | 0.3140 | 0.8876 | 0.8854 | 0.8865 | 0.9178 |
0.1963 | 7.0 | 1708 | 0.3210 | 0.8871 | 0.8840 | 0.8855 | 0.9182 |
0.1963 | 8.0 | 1952 | 0.3304 | 0.8908 | 0.8855 | 0.8882 | 0.9208 |
0.1431 | 9.0 | 2196 | 0.3452 | 0.8907 | 0.8843 | 0.8875 | 0.9206 |
0.1431 | 10.0 | 2440 | 0.3584 | 0.8896 | 0.8835 | 0.8865 | 0.9201 |
0.1061 | 11.0 | 2684 | 0.3770 | 0.8883 | 0.8849 | 0.8866 | 0.9191 |
0.1061 | 12.0 | 2928 | 0.3852 | 0.8876 | 0.8834 | 0.8855 | 0.9186 |
0.082 | 13.0 | 3172 | 0.3941 | 0.8894 | 0.8833 | 0.8863 | 0.9195 |
0.082 | 14.0 | 3416 | 0.3973 | 0.8893 | 0.8842 | 0.8867 | 0.9197 |
0.0694 | 15.0 | 3660 | 0.4042 | 0.8896 | 0.8841 | 0.8868 | 0.9198 |
Framework versions
- Transformers 4.25.1
- Pytorch 1.13.0+cu116
- Datasets 2.8.0
- Tokenizers 0.13.2