albert-small-kor-sbert-v1.1
This is a sentence-transformers model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
albert-small-kor-v1 모델을 sentencebert로 만든 모델.
Usage (Sentence-Transformers)
Using this model becomes easy when you have sentence-transformers installed:
pip install -U sentence-transformers
Then you can use the model like this:
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('bongsoo/albert-small-kor-sbert-v1.1')
embeddings = model.encode(sentences)
print(embeddings)
Usage (HuggingFace Transformers)
Without sentence-transformers, you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
from transformers import AutoTokenizer, AutoModel
import torch
def cls_pooling(model_output, attention_mask):
return model_output[0][:,0]
# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('bongsoo/albert-small-kor-sbert-v1.1')
model = AutoModel.from_pretrained('bongsoo/albert-small-kor-sbert-v1.1')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, cls pooling.
sentence_embeddings = cls_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
Evaluation Results
- 성능 측정을 위한 말뭉치는, 아래 한국어 (kor), 영어(en) 평가 말뭉치를 이용함 <br> 한국어 : korsts(1,379쌍문장) 와 klue-sts(519쌍문장) <br> 영어 : stsb_multi_mt(1,376쌍문장) 와 glue:stsb (1,500쌍문장)
- 성능 지표는 cosin.spearman
- 평가 측정 코드는 여기 참조
모델 | korsts | klue-sts | glue(stsb) | stsb_multi_mt(en) |
---|---|---|---|---|
distiluse-base-multilingual-cased-v2 | 0.7475 | 0.7855 | 0.8193 | 0.8075 |
paraphrase-multilingual-mpnet-base-v2 | 0.8201 | 0.7993 | 0.8907 | 0.8682 |
bongsoo/albert-small-kor-sbert-v1 | 0.8305 | 0.8588 | 0.8419 | 0.7965 |
bongsoo/klue-sbert-v1.0 | 0.8529 | 0.8952 | 0.8813 | 0.8469 |
bongsoo/kpf-sbert-v1.1 | 0.8750 | 0.8900 | 0.8863 | 0.8554 |
bongsoo/albert-small-kor-sbert-v1.1 | 0.8526 | 0.8833 | 0.8484 | 0.8286 |
For an automated evaluation of this model, see the Sentence Embeddings Benchmark: https://seb.sbert.net
Training
- albert-small-kor-v1 모델을 sts(10)-distil(10) 훈련만 시킴 (nli-sts추가 훈련시키면 정합도가 떨어짐)
- 교사모델은 kpf-sbert-v1.1 이용함.
The model was trained with the parameters:
공통
- do_lower_case=1, correct_bios=0, polling_mode=cls
1.STS
- 말뭉치 : korsts(5,749) + kluestsV1.1(11,668) + stsb_multi_mt(5,749) + mteb/sickr-sts(9,927) + glue stsb(5,749) (총:38,842)
- Param : lr: 1e-4, eps: 1e-6, warm_step=10%, epochs: 10, train_batch: 32, eval_batch: 64, max_token_len: 72
- 훈련코드 여기 참조
2.distilation
- 교사 모델 : kpf-sbert-v1.1(max_token_len:128)
- 말뭉치 : news_talk_ko_en_train.tsv (한국어-영어 대화-뉴스 병렬 말뭉치 : 1.38M)
- Param : lr: 5e-5, epochs: 10, train_batch: 32, eval/test_batch: 64, max_token_len: 128(교사모델이 128이므로 맟춰줌)
- 훈련코드 여기 참조
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': True}) with Transformer model: AlbertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
Citing & Authors
bongsoo