sentence-transformers feature-extraction sentence-similarity transformers

albert-small-kor-sbert-v1.1

This is a sentence-transformers model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.

albert-small-kor-v1 모델을 sentencebert로 만든 모델.

Usage (Sentence-Transformers)

Using this model becomes easy when you have sentence-transformers installed:

pip install -U sentence-transformers

Then you can use the model like this:

from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]

model = SentenceTransformer('bongsoo/albert-small-kor-sbert-v1.1')
embeddings = model.encode(sentences)
print(embeddings)

Usage (HuggingFace Transformers)

Without sentence-transformers, you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.

from transformers import AutoTokenizer, AutoModel
import torch


def cls_pooling(model_output, attention_mask):
    return model_output[0][:,0]


# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']

# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('bongsoo/albert-small-kor-sbert-v1.1')
model = AutoModel.from_pretrained('bongsoo/albert-small-kor-sbert-v1.1')

# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')

# Compute token embeddings
with torch.no_grad():
    model_output = model(**encoded_input)

# Perform pooling. In this case, cls pooling.
sentence_embeddings = cls_pooling(model_output, encoded_input['attention_mask'])

print("Sentence embeddings:")
print(sentence_embeddings)

Evaluation Results

모델 korsts klue-sts glue(stsb) stsb_multi_mt(en)
distiluse-base-multilingual-cased-v2 0.7475 0.7855 0.8193 0.8075
paraphrase-multilingual-mpnet-base-v2 0.8201 0.7993 0.8907 0.8682
bongsoo/albert-small-kor-sbert-v1 0.8305 0.8588 0.8419 0.7965
bongsoo/klue-sbert-v1.0 0.8529 0.8952 0.8813 0.8469
bongsoo/kpf-sbert-v1.1 0.8750 0.8900 0.8863 0.8554
bongsoo/albert-small-kor-sbert-v1.1 0.8526 0.8833 0.8484 0.8286

For an automated evaluation of this model, see the Sentence Embeddings Benchmark: https://seb.sbert.net

Training

The model was trained with the parameters:

공통

1.STS

2.distilation

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 256, 'do_lower_case': True}) with Transformer model: AlbertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)

Citing & Authors

bongsoo