<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
ner-swedish-wikiann
This model is a fine-tuned version of nordic-roberta-wiki trained for NER on the wikiann dataset.
eval F1-Score: 83,78
test F1-Score: 83,76
Model Usage
from transformers import AutoTokenizer, AutoModelForTokenClassification
from transformers import pipeline
tokenizer = AutoTokenizer.from_pretrained("birgermoell/ner-swedish-wikiann")
model = AutoModelForTokenClassification.from_pretrained("birgermoell/ner-swedish-wikiann")
nlp = pipeline("ner", model=model, tokenizer=tokenizer)
example = "Jag heter Per och jag jobbar på KTH"
nlp(example)
<!--
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
-
learning_rate: 4.9086903597787154e-05
-
train_batch_size: 32
-
eval_batch_size: 16
-
seed: 42
-
optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
-
lr_scheduler_type: linear
-
num_epochs: 5.0
-
mixed_precision_training: Native AMP
Training results
It achieves the following results on the evaluation set:
-
Loss: 0.3156
-
Precision: 0.8332 from transformers import AutoTokenizer, AutoModelForTokenClassification
from transformers import pipeline
tokenizer = AutoTokenizer.from_pretrained("birgermoell/ner-swedish-wikiann")
model = AutoModelForTokenClassification.from_pretrained("birgermoell/ner-swedish-wikiann")
nlp = pipeline("ner", model=model, tokenizer=tokenizer)
example = "Jag heter Per och jag jobbar på KTH"
nlp(example)
-
F1: 0.8378
-
Accuracy: 0.9193
It achieves the following results on the test set:
-
Loss: 0.3023
-
Precision: 0.8301
-
Recall: 0.8452
-
F1: 0.8376
-
Accuracy: 0.92
Framework versions
-
Transformers 4.6.1
-
Pytorch 1.8.1+cu101
-
Datasets 1.6.2
-
Tokenizers 0.10.2 -->