Model Card of lmqg/mbart-large-cc25-esquad-qg-ae
This model is fine-tuned version of facebook/mbart-large-cc25 for question generation and answer extraction jointly on the lmqg/qg_esquad (dataset_name: default) via lmqg
.
Overview
- Language model: facebook/mbart-large-cc25
- Language: es
- Training data: lmqg/qg_esquad (default)
- Online Demo: https://autoqg.net/
- Repository: https://github.com/asahi417/lm-question-generation
- Paper: https://arxiv.org/abs/2210.03992
Usage
- With
lmqg
from lmqg import TransformersQG
# initialize model
model = TransformersQG(language="es", model="lmqg/mbart-large-cc25-esquad-qg-ae")
# model prediction
question_answer_pairs = model.generate_qa("a noviembre , que es también la estación lluviosa.")
- With
transformers
from transformers import pipeline
pipe = pipeline("text2text-generation", "lmqg/mbart-large-cc25-esquad-qg-ae")
# answer extraction
answer = pipe("generate question: del <hl> Ministerio de Desarrollo Urbano <hl> , Gobierno de la India.")
# question generation
question = pipe("extract answers: <hl> En la diáspora somalí, múltiples eventos islámicos de recaudación de fondos se llevan a cabo cada año en ciudades como Birmingham, Londres, Toronto y Minneapolis, donde los académicos y profesionales somalíes dan conferencias y responden preguntas de la audiencia. <hl> El propósito de estos eventos es recaudar dinero para nuevas escuelas o universidades en Somalia, para ayudar a los somalíes que han sufrido como consecuencia de inundaciones y / o sequías, o para reunir fondos para la creación de nuevas mezquitas como.")
Evaluation
- Metric (Question Generation): raw metric file
Score | Type | Dataset | |
---|---|---|---|
BERTScore | 79.36 | default | lmqg/qg_esquad |
Bleu_1 | 22.05 | default | lmqg/qg_esquad |
Bleu_2 | 14.55 | default | lmqg/qg_esquad |
Bleu_3 | 10.34 | default | lmqg/qg_esquad |
Bleu_4 | 7.61 | default | lmqg/qg_esquad |
METEOR | 19.58 | default | lmqg/qg_esquad |
MoverScore | 56.05 | default | lmqg/qg_esquad |
ROUGE_L | 20.95 | default | lmqg/qg_esquad |
- Metric (Question & Answer Generation): raw metric file
Score | Type | Dataset | |
---|---|---|---|
QAAlignedF1Score (BERTScore) | 81.13 | default | lmqg/qg_esquad |
QAAlignedF1Score (MoverScore) | 54.86 | default | lmqg/qg_esquad |
QAAlignedPrecision (BERTScore) | 77.75 | default | lmqg/qg_esquad |
QAAlignedPrecision (MoverScore) | 52.82 | default | lmqg/qg_esquad |
QAAlignedRecall (BERTScore) | 84.91 | default | lmqg/qg_esquad |
QAAlignedRecall (MoverScore) | 57.16 | default | lmqg/qg_esquad |
- Metric (Answer Extraction): raw metric file
Score | Type | Dataset | |
---|---|---|---|
AnswerExactMatch | 52.81 | default | lmqg/qg_esquad |
AnswerF1Score | 70.95 | default | lmqg/qg_esquad |
BERTScore | 86.7 | default | lmqg/qg_esquad |
Bleu_1 | 32.77 | default | lmqg/qg_esquad |
Bleu_2 | 28.12 | default | lmqg/qg_esquad |
Bleu_3 | 24.52 | default | lmqg/qg_esquad |
Bleu_4 | 21.5 | default | lmqg/qg_esquad |
METEOR | 40.42 | default | lmqg/qg_esquad |
MoverScore | 77.96 | default | lmqg/qg_esquad |
ROUGE_L | 46.66 | default | lmqg/qg_esquad |
Training hyperparameters
The following hyperparameters were used during fine-tuning:
- dataset_path: lmqg/qg_esquad
- dataset_name: default
- input_types: ['paragraph_answer', 'paragraph_sentence']
- output_types: ['question', 'answer']
- prefix_types: ['qg', 'ae']
- model: facebook/mbart-large-cc25
- max_length: 512
- max_length_output: 32
- epoch: 5
- batch: 2
- lr: 0.0001
- fp16: False
- random_seed: 1
- gradient_accumulation_steps: 32
- label_smoothing: 0.15
The full configuration can be found at fine-tuning config file.
Citation
@inproceedings{ushio-etal-2022-generative,
title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
author = "Ushio, Asahi and
Alva-Manchego, Fernando and
Camacho-Collados, Jose",
booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
month = dec,
year = "2022",
address = "Abu Dhabi, U.A.E.",
publisher = "Association for Computational Linguistics",
}