<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->
mobilebert_add_GLUE_Experiment_mrpc_128
This model is a fine-tuned version of google/mobilebert-uncased on the GLUE MRPC dataset. It achieves the following results on the evaluation set:
- Loss: 0.6231
- Accuracy: 0.6838
- F1: 0.8122
- Combined Score: 0.7480
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 10
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score |
---|---|---|---|---|---|---|
0.6471 | 1.0 | 29 | 0.6239 | 0.6838 | 0.8122 | 0.7480 |
0.6304 | 2.0 | 58 | 0.6242 | 0.6838 | 0.8122 | 0.7480 |
0.6314 | 3.0 | 87 | 0.6249 | 0.6838 | 0.8122 | 0.7480 |
0.6307 | 4.0 | 116 | 0.6250 | 0.6838 | 0.8122 | 0.7480 |
0.6298 | 5.0 | 145 | 0.6233 | 0.6838 | 0.8122 | 0.7480 |
0.6283 | 6.0 | 174 | 0.6233 | 0.6838 | 0.8122 | 0.7480 |
0.6283 | 7.0 | 203 | 0.6231 | 0.6838 | 0.8122 | 0.7480 |
0.6224 | 8.0 | 232 | 0.6265 | 0.6838 | 0.8122 | 0.7480 |
0.6042 | 9.0 | 261 | 0.6355 | 0.6838 | 0.8122 | 0.7480 |
0.5862 | 10.0 | 290 | 0.6303 | 0.6838 | 0.8122 | 0.7480 |
0.5717 | 11.0 | 319 | 0.6515 | 0.6324 | 0.7525 | 0.6924 |
0.5641 | 12.0 | 348 | 0.6412 | 0.6838 | 0.8122 | 0.7480 |
Framework versions
- Transformers 4.26.0
- Pytorch 1.14.0a0+410ce96
- Datasets 2.8.0
- Tokenizers 0.13.2