Wav2Vec2-Large-XLSR-53
language: gl datasets:
- OpenSLR 77 metrics:
- wer tags:
- audio
- automatic-speech-recognition
- speech
- xlsr-fine-tuning-week license: apache-2.0 model-index:
- name: Galician Wav2Vec2-Large-XLSR-53
results:
- task:
name: Speech Recognition
type: automatic-speech-recognition
dataset:
name: OpenSLR
type: openslr
args: gl
metrics:
- name: Test WER type: wer value: 16.79
- task:
name: Speech Recognition
type: automatic-speech-recognition
dataset:
name: OpenSLR
type: openslr
args: gl
metrics:
Wav2Vec2-Large-XLSR-53-galician
Fine-tuned facebook/wav2vec2-large-xlsr-53 on galician using the OpenSLR dataset
When using this model, make sure that your speech input is sampled at 16kHz.
Usage
The model can be used directly (without a language model) as follows:
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
test_dataset = load_dataset("common_voice", "gl", split="test[:2%]") # This is not available yet, load OpenSLR or your dataset instead
processor = Wav2Vec2Processor.from_pretrained("diego-fustes/wav2vec2-large-xlsr-gl")
model = Wav2Vec2ForCTC.from_pretrained("diego-fustes/wav2vec2-large-xlsr-gl")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])
Evaluation
The model can be evaluated as follows on the Galician test data of Common Voice (when it is released).
import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re
test_dataset = load_dataset("common_voice", "gl", split="test") # This is not available yet, load OpenSLR or your dataset instead
wer = load_metric("wer")
processor = Wav2Vec2Processor.from_pretrained("diego-fustes/wav2vec2-large-xlsr-gl")
model = Wav2Vec2ForCTC.from_pretrained("diego-fustes/wav2vec2-large-xlsr-gl")
model.to("cuda")
chars_to_ignore_regex = '[^a-záéíóúñ ]'
resampler = torchaudio.transforms.Resample(48_000, 16_000)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def evaluate(batch):
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["pred_strings"] = processor.batch_decode(pred_ids)
return batch
result = test_dataset.map(evaluate, batched=True, batch_size=8)
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
Test Result: 16.79 % on OpenSLR split
Training
The OpenSLR SLR77 dataset was used for training and validation. The dataset was split as 70% for training, 15% for validation and 15% for testing
The script used for training can be found here