text sentiment politics text-classification

eevvgg/sentimenTw-political

This model is a fine-tuned version of multilingual model cardiffnlp/twitter-xlm-roberta-base-sentiment. Classification of text sentiment into 3 categories: negative, neutral, positive. Fine-tuned on a 2k sample of manually annotated Reddit (EN) and Twitter (PL) data.

Uses

Sentiment classification in multilingual data. Fine-tuned on a 2k English and Polish sample of social media texts from political domain. Model suited for short text (up to 200 tokens) .

How to Get Started with the Model

from transformers import pipeline

model_path = "eevvgg/sentimenTw-political"
sentiment_task = pipeline(task = "text-classification", model = model_path, tokenizer = model_path)

sequence = ["TRUMP needs undecided voters",
            "Oczywiƛcie ze Pan Prezydent to nasza duma narodowa!!"]
            
result = sentiment_task(sequence)
labels = [i['label'] for i in result] # ['neutral', 'positive']            

Model Sources

@misc{SentimenTwGK2023,
  author={Gajewska, Ewelina and Konat, Barbara},
  title={SentimenTw XLM-RoBERTa-base Model for Multilingual Sentiment Classification on Social Media},
  year={2023},
  howpublished = {\url{https://huggingface.co/eevvgg/sentimenTw-political}},
}

Training Details

Preprocessing

Speeds, Sizes, Times

Evaluation

Results

Citation

BibTeX:

@misc{SentimenTwGK2023,
  author={Gajewska, Ewelina and Konat, Barbara},
  title={SentimenTw XLM-RoBERTa-base Model for Multilingual Sentiment Classification on Social Media},
  year={2023},
  howpublished = {\url{https://huggingface.co/eevvgg/sentimenTw-political}},
}

APA:

Gajewska, E., & Konat, B. (2023).
SentimenTw XLM-RoBERTa-base Model for Multilingual Sentiment Classification on Social Media.
https://huggingface.co/eevvgg/sentimenTw-political.