question generation answer extraction

Model Card of lmqg/mbart-large-cc25-ruquad-qg-ae

This model is fine-tuned version of facebook/mbart-large-cc25 for question generation and answer extraction jointly on the lmqg/qg_ruquad (dataset_name: default) via lmqg.

Overview

Usage

from lmqg import TransformersQG

# initialize model
model = TransformersQG(language="ru", model="lmqg/mbart-large-cc25-ruquad-qg-ae")

# model prediction
question_answer_pairs = model.generate_qa("Нелишним будет отметить, что, развивая это направление, Д. И. Менделеев, поначалу априорно выдвинув идею о температуре, при которой высота мениска будет нулевой, в мае 1860 года провёл серию опытов.")

from transformers import pipeline

pipe = pipeline("text2text-generation", "lmqg/mbart-large-cc25-ruquad-qg-ae")

# answer extraction
answer = pipe("generate question: Нелишним будет отметить, что, развивая это направление, Д. И. Менделеев, поначалу априорно выдвинув идею о температуре, при которой высота мениска будет нулевой, <hl> в мае 1860 года <hl> провёл серию опытов.")

# question generation
question = pipe("extract answers: <hl> в английском языке в нарицательном смысле применяется термин rapid transit (скоростной городской транспорт), однако употребляется он только тогда, когда по смыслу невозможно ограничиться названием одной конкретной системы метрополитена. <hl> в остальных случаях используются индивидуальные названия: в лондоне — london underground, в нью-йорке — new york subway, в ливерпуле — merseyrail, в вашингтоне — washington metrorail, в сан-франциско — bart и т. п. в некоторых городах применяется название метро (англ. metro) для систем, по своему характеру близких к метро, или для всего городского транспорта (собственно метро и наземный пассажирский транспорт (в том числе автобусы и трамваи)) в совокупности.")

Evaluation

Score Type Dataset
BERTScore 86.5 default lmqg/qg_ruquad
Bleu_1 34.01 default lmqg/qg_ruquad
Bleu_2 26.99 default lmqg/qg_ruquad
Bleu_3 21.9 default lmqg/qg_ruquad
Bleu_4 17.97 default lmqg/qg_ruquad
METEOR 29.35 default lmqg/qg_ruquad
MoverScore 65.37 default lmqg/qg_ruquad
ROUGE_L 33.61 default lmqg/qg_ruquad
Score Type Dataset
QAAlignedF1Score (BERTScore) 60.14 default lmqg/qg_ruquad
QAAlignedF1Score (MoverScore) 42.22 default lmqg/qg_ruquad
QAAlignedPrecision (BERTScore) 58.32 default lmqg/qg_ruquad
QAAlignedPrecision (MoverScore) 41.05 default lmqg/qg_ruquad
QAAlignedRecall (BERTScore) 62.21 default lmqg/qg_ruquad
QAAlignedRecall (MoverScore) 43.58 default lmqg/qg_ruquad
Score Type Dataset
AnswerExactMatch 42.67 default lmqg/qg_ruquad
AnswerF1Score 63.23 default lmqg/qg_ruquad
BERTScore 85.62 default lmqg/qg_ruquad
Bleu_1 44.16 default lmqg/qg_ruquad
Bleu_2 39.37 default lmqg/qg_ruquad
Bleu_3 34.9 default lmqg/qg_ruquad
Bleu_4 30.37 default lmqg/qg_ruquad
METEOR 38.32 default lmqg/qg_ruquad
MoverScore 73.64 default lmqg/qg_ruquad
ROUGE_L 48.9 default lmqg/qg_ruquad

Training hyperparameters

The following hyperparameters were used during fine-tuning:

The full configuration can be found at fine-tuning config file.

Citation

@inproceedings{ushio-etal-2022-generative,
    title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
    author = "Ushio, Asahi  and
        Alva-Manchego, Fernando  and
        Camacho-Collados, Jose",
    booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
    month = dec,
    year = "2022",
    address = "Abu Dhabi, U.A.E.",
    publisher = "Association for Computational Linguistics",
}