Wav2Vec2-Large-XLSR-53-Bemba
Fine-tuned facebook/wav2vec2-large-xlsr-53 on Bemba language of Zambia using the BembaSpeech. When using this model, make sure that your speech input is sampled at 16kHz.
Usage
The model can be used directly (without a language model) as follows:
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
test_dataset = load_dataset("csv", data_files={"test": "/content/test.csv"}, delimiter="\t")["test"] # Adapt the path to test.csv
processor = Wav2Vec2Processor.from_pretrained("csikasote/wav2vec2-large-xlsr-bemba")
model = Wav2Vec2ForCTC.from_pretrained("csikasote/wav2vec2-large-xlsr-bemba")
#BembaSpeech is sample at 16kHz so we you do not need to resample
#resampler = torchaudio.transforms.Resample(48_000, 16_000)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = speech_array.squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])
Evaluation
The model can be evaluated as follows on the Bemba test data of BembaSpeech.
import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re
test_dataset = load_dataset("csv", data_files={"test": "/content/test.csv"}, delimiter="\\t")["test"]
wer = load_metric("wer")
processor = Wav2Vec2Processor.from_pretrained("csikasote/wav2vec2-large-xlsr-bemba")
model = Wav2Vec2ForCTC.from_pretrained("csikasote/wav2vec2-large-xlsr-bemba")
model.to("cuda")
chars_to_ignore_regex = '[\,\_\?\.\!\;\:\"\“]'
#resampler = torchaudio.transforms.Resample(48_000, 16_000)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = speech_array.squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def evaluate(batch):
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["pred_strings"] = processor.batch_decode(pred_ids)
return batch
result = test_dataset.map(evaluate, batched=True, batch_size=8)
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
Test Result: 42.17 %
Training
The BembaSpeech train, dev and test datasets were used for training, development and evaluation respectively. The script used for evaluating the model on the test dataset can be found here.