<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. -->
Razi78/mit-b0-finetuned-sidewalks
This model is a fine-tuned version of nvidia/mit-b0 on an unknown dataset. It achieves the following results on the evaluation set:
- Train Loss: 0.3834
- Validation Loss: 0.5143
- Validation Mean Iou: 0.3111
- Validation Mean Accuracy: 0.3771
- Validation Overall Accuracy: 0.8584
- Validation Accuracy Unlabeled: 0.0
- Validation Accuracy Flat-road: 0.9192
- Validation Accuracy Flat-sidewalk: 0.9577
- Validation Accuracy Flat-crosswalk: 0.7640
- Validation Accuracy Flat-cyclinglane: 0.7293
- Validation Accuracy Flat-parkingdriveway: 0.5706
- Validation Accuracy Flat-railtrack: nan
- Validation Accuracy Flat-curb: 0.5961
- Validation Accuracy Human-person: 0.4335
- Validation Accuracy Human-rider: 0.0004
- Validation Accuracy Vehicle-car: 0.9314
- Validation Accuracy Vehicle-truck: 0.0
- Validation Accuracy Vehicle-bus: 0.0
- Validation Accuracy Vehicle-tramtrain: nan
- Validation Accuracy Vehicle-motorcycle: 0.0
- Validation Accuracy Vehicle-bicycle: 0.7297
- Validation Accuracy Vehicle-caravan: 0.0
- Validation Accuracy Vehicle-cartrailer: 0.0
- Validation Accuracy Construction-building: 0.8770
- Validation Accuracy Construction-door: 0.1184
- Validation Accuracy Construction-wall: 0.6003
- Validation Accuracy Construction-fenceguardrail: 0.2523
- Validation Accuracy Construction-bridge: 0.0
- Validation Accuracy Construction-tunnel: nan
- Validation Accuracy Construction-stairs: 0.0002
- Validation Accuracy Object-pole: 0.4300
- Validation Accuracy Object-trafficsign: 0.0086
- Validation Accuracy Object-trafficlight: 0.0
- Validation Accuracy Nature-vegetation: 0.9272
- Validation Accuracy Nature-terrain: 0.9108
- Validation Accuracy Sky: 0.9451
- Validation Accuracy Void-ground: 0.0191
- Validation Accuracy Void-dynamic: 0.1244
- Validation Accuracy Void-static: 0.2207
- Validation Accuracy Void-unclear: 0.0
- Validation Iou Unlabeled: 0.0
- Validation Iou Flat-road: 0.8166
- Validation Iou Flat-sidewalk: 0.8868
- Validation Iou Flat-crosswalk: 0.6819
- Validation Iou Flat-cyclinglane: 0.6879
- Validation Iou Flat-parkingdriveway: 0.4524
- Validation Iou Flat-railtrack: nan
- Validation Iou Flat-curb: 0.4954
- Validation Iou Human-person: 0.2162
- Validation Iou Human-rider: 0.0004
- Validation Iou Vehicle-car: 0.7937
- Validation Iou Vehicle-truck: 0.0
- Validation Iou Vehicle-bus: 0.0
- Validation Iou Vehicle-tramtrain: nan
- Validation Iou Vehicle-motorcycle: 0.0
- Validation Iou Vehicle-bicycle: 0.3137
- Validation Iou Vehicle-caravan: 0.0
- Validation Iou Vehicle-cartrailer: 0.0
- Validation Iou Construction-building: 0.6885
- Validation Iou Construction-door: 0.1172
- Validation Iou Construction-wall: 0.3928
- Validation Iou Construction-fenceguardrail: 0.2309
- Validation Iou Construction-bridge: 0.0
- Validation Iou Construction-tunnel: nan
- Validation Iou Construction-stairs: 0.0002
- Validation Iou Object-pole: 0.3417
- Validation Iou Object-trafficsign: 0.0086
- Validation Iou Object-trafficlight: 0.0
- Validation Iou Nature-vegetation: 0.8341
- Validation Iou Nature-terrain: 0.7970
- Validation Iou Sky: 0.9032
- Validation Iou Void-ground: 0.0129
- Validation Iou Void-dynamic: 0.1139
- Validation Iou Void-static: 0.1678
- Validation Iou Void-unclear: 0.0
- Epoch: 9
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'learning_rate': 6e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}
- training_precision: float32
Training results
Train Loss | Validation Loss | Validation Mean Iou | Validation Mean Accuracy | Validation Overall Accuracy | Validation Accuracy Unlabeled | Validation Accuracy Flat-road | Validation Accuracy Flat-sidewalk | Validation Accuracy Flat-crosswalk | Validation Accuracy Flat-cyclinglane | Validation Accuracy Flat-parkingdriveway | Validation Accuracy Flat-railtrack | Validation Accuracy Flat-curb | Validation Accuracy Human-person | Validation Accuracy Human-rider | Validation Accuracy Vehicle-car | Validation Accuracy Vehicle-truck | Validation Accuracy Vehicle-bus | Validation Accuracy Vehicle-tramtrain | Validation Accuracy Vehicle-motorcycle | Validation Accuracy Vehicle-bicycle | Validation Accuracy Vehicle-caravan | Validation Accuracy Vehicle-cartrailer | Validation Accuracy Construction-building | Validation Accuracy Construction-door | Validation Accuracy Construction-wall | Validation Accuracy Construction-fenceguardrail | Validation Accuracy Construction-bridge | Validation Accuracy Construction-tunnel | Validation Accuracy Construction-stairs | Validation Accuracy Object-pole | Validation Accuracy Object-trafficsign | Validation Accuracy Object-trafficlight | Validation Accuracy Nature-vegetation | Validation Accuracy Nature-terrain | Validation Accuracy Sky | Validation Accuracy Void-ground | Validation Accuracy Void-dynamic | Validation Accuracy Void-static | Validation Accuracy Void-unclear | Validation Iou Unlabeled | Validation Iou Flat-road | Validation Iou Flat-sidewalk | Validation Iou Flat-crosswalk | Validation Iou Flat-cyclinglane | Validation Iou Flat-parkingdriveway | Validation Iou Flat-railtrack | Validation Iou Flat-curb | Validation Iou Human-person | Validation Iou Human-rider | Validation Iou Vehicle-car | Validation Iou Vehicle-truck | Validation Iou Vehicle-bus | Validation Iou Vehicle-tramtrain | Validation Iou Vehicle-motorcycle | Validation Iou Vehicle-bicycle | Validation Iou Vehicle-caravan | Validation Iou Vehicle-cartrailer | Validation Iou Construction-building | Validation Iou Construction-door | Validation Iou Construction-wall | Validation Iou Construction-fenceguardrail | Validation Iou Construction-bridge | Validation Iou Construction-tunnel | Validation Iou Construction-stairs | Validation Iou Object-pole | Validation Iou Object-trafficsign | Validation Iou Object-trafficlight | Validation Iou Nature-vegetation | Validation Iou Nature-terrain | Validation Iou Sky | Validation Iou Void-ground | Validation Iou Void-dynamic | Validation Iou Void-static | Validation Iou Void-unclear | Epoch |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.9317 | 0.8154 | 0.2102 | 0.2560 | 0.7682 | 0.0 | 0.6893 | 0.9604 | 0.0692 | 0.5295 | 0.2461 | nan | 0.1561 | 0.3200 | 0.0 | 0.8354 | 0.0 | 0.0 | nan | 0.0 | 0.2425 | 0.0 | 0.0 | 0.9131 | 0.0 | 0.4341 | 0.0393 | 0.0 | nan | 0.0 | 0.1490 | 0.0 | 0.0 | 0.8925 | 0.7949 | 0.8907 | 0.0 | 0.0 | 0.0312 | 0.0 | 0.0 | 0.6025 | 0.7613 | 0.0592 | 0.4972 | 0.1904 | nan | 0.1381 | 0.1729 | 0.0 | 0.6829 | 0.0 | 0.0 | nan | 0.0 | 0.2326 | 0.0 | 0.0 | 0.6065 | 0.0 | 0.2748 | 0.0373 | 0.0 | nan | 0.0 | 0.1290 | 0.0 | 0.0 | 0.7610 | 0.7122 | 0.8379 | 0.0 | 0.0 | 0.0290 | 0.0 | 0 |
0.7608 | 0.6595 | 0.2548 | 0.3136 | 0.8171 | 0.0 | 0.8941 | 0.9522 | 0.6912 | 0.6050 | 0.3030 | nan | 0.3367 | 0.2592 | 0.0 | 0.9338 | 0.0 | 0.0 | nan | 0.0 | 0.6196 | 0.0 | 0.0 | 0.9157 | 0.0 | 0.3823 | 0.1128 | 0.0 | nan | 0.0 | 0.3210 | 0.0 | 0.0 | 0.8806 | 0.8924 | 0.9015 | 0.0 | 0.0000 | 0.0333 | 0.0 | 0.0 | 0.7420 | 0.8433 | 0.5403 | 0.5702 | 0.2545 | nan | 0.2746 | 0.1762 | 0.0 | 0.6919 | 0.0 | 0.0 | nan | 0.0 | 0.3429 | 0.0 | 0.0 | 0.6498 | 0.0 | 0.3327 | 0.1042 | 0.0 | nan | 0.0 | 0.2434 | 0.0 | 0.0 | 0.7779 | 0.7237 | 0.8541 | 0.0 | 0.0000 | 0.0310 | 0.0 | 1 |
0.6681 | 0.6072 | 0.2674 | 0.3272 | 0.8280 | 0.0 | 0.9032 | 0.9567 | 0.7278 | 0.6428 | 0.3220 | nan | 0.4555 | 0.3397 | 0.0 | 0.9113 | 0.0 | 0.0 | nan | 0.0 | 0.6286 | 0.0 | 0.0 | 0.9198 | 0.0 | 0.4124 | 0.1341 | 0.0 | nan | 0.0 | 0.3081 | 0.0 | 0.0 | 0.8981 | 0.8786 | 0.9243 | 0.0 | 0.0017 | 0.1065 | 0.0 | 0.0 | 0.7533 | 0.8546 | 0.5263 | 0.5791 | 0.2720 | nan | 0.3614 | 0.2103 | 0.0 | 0.7452 | 0.0 | 0.0 | nan | 0.0 | 0.3554 | 0.0 | 0.0 | 0.6599 | 0.0 | 0.3313 | 0.1224 | 0.0 | nan | 0.0 | 0.2514 | 0.0 | 0.0 | 0.8025 | 0.7572 | 0.8844 | 0.0 | 0.0017 | 0.0872 | 0.0 | 2 |
0.5925 | 0.6026 | 0.2648 | 0.3393 | 0.8274 | 0.0 | 0.9012 | 0.9596 | 0.7587 | 0.4868 | 0.3931 | nan | 0.4939 | 0.4798 | 0.0 | 0.9305 | 0.0 | 0.0 | nan | 0.0 | 0.6949 | 0.0 | 0.0 | 0.8788 | 0.0055 | 0.4856 | 0.2068 | 0.0 | nan | 0.0 | 0.3218 | 0.0 | 0.0 | 0.9225 | 0.8065 | 0.9463 | 0.0 | 0.0088 | 0.1775 | 0.0 | 0.0 | 0.7554 | 0.8616 | 0.4355 | 0.4717 | 0.3184 | nan | 0.3968 | 0.1662 | 0.0 | 0.7466 | 0.0 | 0.0 | nan | 0.0 | 0.3030 | 0.0 | 0.0 | 0.6735 | 0.0055 | 0.3466 | 0.1850 | 0.0 | nan | 0.0 | 0.2647 | 0.0 | 0.0 | 0.7979 | 0.7236 | 0.8846 | 0.0 | 0.0087 | 0.1272 | 0.0 | 3 |
0.5490 | 0.5696 | 0.2851 | 0.3592 | 0.8332 | 0.0 | 0.9047 | 0.9542 | 0.7587 | 0.8163 | 0.2408 | nan | 0.4944 | 0.4919 | 0.0 | 0.9378 | 0.0 | 0.0 | nan | 0.0 | 0.6285 | 0.0 | 0.0 | 0.7944 | 0.0154 | 0.6766 | 0.2609 | 0.0 | nan | 0.0 | 0.3746 | 0.0 | 0.0 | 0.9297 | 0.8885 | 0.9420 | 0.0 | 0.0162 | 0.3688 | 0.0 | 0.0 | 0.7889 | 0.8429 | 0.5208 | 0.6443 | 0.2243 | nan | 0.4038 | 0.2429 | 0.0 | 0.7563 | 0.0 | 0.0 | nan | 0.0 | 0.3698 | 0.0 | 0.0 | 0.6685 | 0.0154 | 0.3882 | 0.2469 | 0.0 | nan | 0.0 | 0.2997 | 0.0 | 0.0 | 0.8193 | 0.7808 | 0.8957 | 0.0 | 0.0162 | 0.1978 | 0.0 | 4 |
0.5087 | 0.6074 | 0.2757 | 0.3621 | 0.8352 | 0.0 | 0.8976 | 0.9445 | 0.7794 | 0.8244 | 0.4367 | nan | 0.5158 | 0.3467 | 0.0 | 0.9435 | 0.0 | 0.0 | nan | 0.0 | 0.6765 | 0.0 | 0.0 | 0.8456 | 0.0 | 0.6933 | 0.3127 | 0.0 | nan | 0.0 | 0.3967 | 0.0 | 0.0 | 0.8398 | 0.9282 | 0.9458 | 0.0009 | 0.0311 | 0.2278 | 0.0 | 0.0 | 0.8265 | 0.8780 | 0.2240 | 0.6742 | 0.3488 | nan | 0.4169 | 0.2292 | 0.0 | 0.7495 | 0.0 | 0.0 | nan | 0.0 | 0.3271 | 0.0 | 0.0 | 0.6755 | 0.0 | 0.3241 | 0.2429 | 0.0 | nan | 0.0 | 0.3127 | 0.0 | 0.0 | 0.7884 | 0.7138 | 0.8980 | 0.0009 | 0.0307 | 0.1622 | 0.0 | 5 |
0.4645 | 0.5448 | 0.2833 | 0.3577 | 0.8448 | 0.0 | 0.9011 | 0.9398 | 0.7623 | 0.8812 | 0.4475 | nan | 0.5125 | 0.2508 | 0.0 | 0.9112 | 0.0 | 0.0 | nan | 0.0 | 0.7279 | 0.0 | 0.0 | 0.8911 | 0.0069 | 0.4498 | 0.2347 | 0.0 | nan | 0.0 | 0.4219 | 0.0 | 0.0 | 0.9311 | 0.8977 | 0.9586 | 0.0047 | 0.0537 | 0.2607 | 0.0 | 0.0 | 0.7907 | 0.8723 | 0.3294 | 0.6963 | 0.3712 | nan | 0.4011 | 0.1708 | 0.0 | 0.7812 | 0.0 | 0.0 | nan | 0.0 | 0.2907 | 0.0 | 0.0 | 0.6882 | 0.0069 | 0.3945 | 0.2080 | 0.0 | nan | 0.0 | 0.3297 | 0.0 | 0.0 | 0.8056 | 0.7819 | 0.8986 | 0.0044 | 0.0524 | 0.1915 | 0.0 | 6 |
0.4400 | 0.5322 | 0.2999 | 0.3816 | 0.8484 | 0.0 | 0.9128 | 0.9403 | 0.7752 | 0.7936 | 0.5206 | nan | 0.5800 | 0.4537 | 0.0008 | 0.9363 | 0.0 | 0.0 | nan | 0.0 | 0.7218 | 0.0 | 0.0 | 0.8411 | 0.0992 | 0.5054 | 0.3913 | 0.0 | nan | 0.0 | 0.4708 | 0.0036 | 0.0 | 0.9403 | 0.8654 | 0.9578 | 0.0094 | 0.2155 | 0.2765 | 0.0 | 0.0 | 0.8172 | 0.8728 | 0.3442 | 0.6603 | 0.3949 | nan | 0.4461 | 0.2232 | 0.0008 | 0.7795 | 0.0 | 0.0 | nan | 0.0 | 0.3286 | 0.0 | 0.0 | 0.6937 | 0.0992 | 0.3885 | 0.3025 | 0.0 | nan | 0.0 | 0.3416 | 0.0036 | 0.0 | 0.8251 | 0.8025 | 0.8911 | 0.0083 | 0.1864 | 0.1852 | 0.0 | 7 |
0.4155 | 0.5094 | 0.3081 | 0.3776 | 0.8558 | 0.0 | 0.9018 | 0.9694 | 0.7703 | 0.8377 | 0.4270 | nan | 0.5865 | 0.4399 | 0.0 | 0.9361 | 0.0 | 0.0 | nan | 0.0 | 0.7080 | 0.0 | 0.0 | 0.8763 | 0.0578 | 0.5485 | 0.2927 | 0.0 | nan | 0.0 | 0.4487 | 0.0054 | 0.0 | 0.9042 | 0.9128 | 0.9492 | 0.0099 | 0.1807 | 0.3193 | 0.0 | 0.0 | 0.8330 | 0.8773 | 0.5168 | 0.7730 | 0.3741 | nan | 0.4799 | 0.2673 | 0.0 | 0.7888 | 0.0 | 0.0 | nan | 0.0 | 0.3382 | 0.0 | 0.0 | 0.6906 | 0.0578 | 0.4031 | 0.2381 | 0.0 | nan | 0.0 | 0.3486 | 0.0054 | 0.0 | 0.8227 | 0.7534 | 0.9091 | 0.0066 | 0.1631 | 0.2111 | 0.0 | 8 |
0.3834 | 0.5143 | 0.3111 | 0.3771 | 0.8584 | 0.0 | 0.9192 | 0.9577 | 0.7640 | 0.7293 | 0.5706 | nan | 0.5961 | 0.4335 | 0.0004 | 0.9314 | 0.0 | 0.0 | nan | 0.0 | 0.7297 | 0.0 | 0.0 | 0.8770 | 0.1184 | 0.6003 | 0.2523 | 0.0 | nan | 0.0002 | 0.4300 | 0.0086 | 0.0 | 0.9272 | 0.9108 | 0.9451 | 0.0191 | 0.1244 | 0.2207 | 0.0 | 0.0 | 0.8166 | 0.8868 | 0.6819 | 0.6879 | 0.4524 | nan | 0.4954 | 0.2162 | 0.0004 | 0.7937 | 0.0 | 0.0 | nan | 0.0 | 0.3137 | 0.0 | 0.0 | 0.6885 | 0.1172 | 0.3928 | 0.2309 | 0.0 | nan | 0.0002 | 0.3417 | 0.0086 | 0.0 | 0.8341 | 0.7970 | 0.9032 | 0.0129 | 0.1139 | 0.1678 | 0.0 | 9 |
Framework versions
- Transformers 4.26.1
- TensorFlow 2.11.0
- Datasets 2.9.0
- Tokenizers 0.13.2