Model Card for Model ID
This model is a small resnet34 trained on cifar10.
- Test Accuracy: 0.954
- License: MIT
How to Get Started with the Model
Use the code below to get started with the model.
import detectors
import timm
model = timm.create_model("resnet34_cifar10", pretrained=True)
Training Data
Training data is cifar10.
Training Hyperparameters
-
config:
scripts/train_configs/cifar10.json -
model:
resnet34_cifar10 -
dataset:
cifar10 -
batch_size:
128 -
epochs:
300 -
validation_frequency:
5 -
seed:
1 -
criterion:
CrossEntropyLoss -
criterion_kwargs:
{} -
optimizer:
SGD -
lr:
0.1 -
optimizer_kwargs:
{'momentum': 0.9, 'weight_decay': 0.0005, 'nesterov': 'True'} -
scheduler:
ReduceLROnPlateau -
scheduler_kwargs:
{'factor': 0.1, 'patience': 3, 'threshold': 0.001, 'mode': 'max'} -
debug:
False
Testing Data
Testing data is cifar10.
This model card was created by Eduardo Dadalto.