<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->
roberta-base-finetuned-ner
This model is a fine-tuned version of roberta-base on the conll2003 dataset. It achieves the following results on the evaluation set:
- Loss: 0.0492
- Precision: 0.9530
- Recall: 0.9604
- F1: 0.9567
- Accuracy: 0.9889
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.2031 | 1.0 | 878 | 0.0560 | 0.9381 | 0.9445 | 0.9413 | 0.9858 |
0.0446 | 2.0 | 1756 | 0.0480 | 0.9510 | 0.9578 | 0.9544 | 0.9887 |
0.0263 | 3.0 | 2634 | 0.0492 | 0.9530 | 0.9604 | 0.9567 | 0.9889 |
Framework versions
- Transformers 4.10.2
- Pytorch 1.9.0+cu102
- Datasets 1.12.0
- Tokenizers 0.10.3