<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->
clinico-xlm-roberta-large-finetuned
This model is a fine-tuned version of joheras/xlm-roberta-large-finetuned-clinais on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.3788
- Precision: 0.5418
- Recall: 0.6453
- F1: 0.5890
- Accuracy: 0.8708
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 100
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 1.0 | 49 | 0.5993 | 0.2242 | 0.4577 | 0.3010 | 0.8168 |
No log | 2.0 | 98 | 0.5762 | 0.2365 | 0.4668 | 0.3140 | 0.8280 |
No log | 3.0 | 147 | 0.5627 | 0.2460 | 0.4989 | 0.3296 | 0.8326 |
No log | 4.0 | 196 | 0.5260 | 0.3029 | 0.5435 | 0.3890 | 0.8534 |
No log | 5.0 | 245 | 0.5838 | 0.3058 | 0.5343 | 0.3890 | 0.8559 |
No log | 6.0 | 294 | 0.6085 | 0.3369 | 0.5686 | 0.4232 | 0.8545 |
No log | 7.0 | 343 | 0.6481 | 0.3532 | 0.5824 | 0.4397 | 0.8591 |
No log | 8.0 | 392 | 0.6809 | 0.3523 | 0.5744 | 0.4367 | 0.8580 |
No log | 9.0 | 441 | 0.8040 | 0.3864 | 0.5778 | 0.4631 | 0.8568 |
No log | 10.0 | 490 | 0.7505 | 0.3775 | 0.5870 | 0.4595 | 0.8635 |
0.3143 | 11.0 | 539 | 0.8028 | 0.4350 | 0.6007 | 0.5046 | 0.8610 |
0.3143 | 12.0 | 588 | 0.8103 | 0.4253 | 0.6190 | 0.5042 | 0.8672 |
0.3143 | 13.0 | 637 | 0.8302 | 0.4506 | 0.6362 | 0.5275 | 0.8637 |
0.3143 | 14.0 | 686 | 0.9385 | 0.4581 | 0.6247 | 0.5286 | 0.8583 |
0.3143 | 15.0 | 735 | 0.9407 | 0.4304 | 0.6156 | 0.5066 | 0.8639 |
0.3143 | 16.0 | 784 | 0.9105 | 0.4421 | 0.6201 | 0.5162 | 0.8679 |
0.3143 | 17.0 | 833 | 0.9616 | 0.4691 | 0.6247 | 0.5358 | 0.8654 |
0.3143 | 18.0 | 882 | 0.9695 | 0.4799 | 0.6281 | 0.5441 | 0.8680 |
0.3143 | 19.0 | 931 | 1.0195 | 0.4996 | 0.6396 | 0.5610 | 0.8735 |
0.3143 | 20.0 | 980 | 1.0073 | 0.4670 | 0.6224 | 0.5336 | 0.8642 |
0.0259 | 21.0 | 1029 | 1.0354 | 0.4783 | 0.6316 | 0.5444 | 0.8673 |
0.0259 | 22.0 | 1078 | 1.1327 | 0.5258 | 0.6419 | 0.5781 | 0.8646 |
0.0259 | 23.0 | 1127 | 1.0605 | 0.5055 | 0.6281 | 0.5602 | 0.8668 |
0.0259 | 24.0 | 1176 | 1.0120 | 0.5158 | 0.6350 | 0.5692 | 0.8657 |
0.0259 | 25.0 | 1225 | 1.0205 | 0.4920 | 0.6339 | 0.5540 | 0.8729 |
0.0259 | 26.0 | 1274 | 1.0583 | 0.4995 | 0.6259 | 0.5556 | 0.8688 |
0.0259 | 27.0 | 1323 | 1.1157 | 0.5066 | 0.6545 | 0.5711 | 0.8698 |
0.0259 | 28.0 | 1372 | 1.1049 | 0.5048 | 0.6568 | 0.5709 | 0.8694 |
0.0259 | 29.0 | 1421 | 1.1167 | 0.4978 | 0.6487 | 0.5633 | 0.8685 |
0.0259 | 30.0 | 1470 | 1.1614 | 0.5 | 0.6625 | 0.5699 | 0.8644 |
0.0062 | 31.0 | 1519 | 1.1521 | 0.4991 | 0.6453 | 0.5629 | 0.8647 |
0.0062 | 32.0 | 1568 | 1.1951 | 0.4938 | 0.6419 | 0.5582 | 0.8661 |
0.0062 | 33.0 | 1617 | 1.2044 | 0.4815 | 0.6419 | 0.5503 | 0.8676 |
0.0062 | 34.0 | 1666 | 1.1952 | 0.5242 | 0.6556 | 0.5826 | 0.8712 |
0.0062 | 35.0 | 1715 | 1.1598 | 0.5283 | 0.6625 | 0.5878 | 0.8768 |
0.0062 | 36.0 | 1764 | 1.1716 | 0.5221 | 0.6613 | 0.5835 | 0.8720 |
0.0062 | 37.0 | 1813 | 1.2127 | 0.5236 | 0.6465 | 0.5786 | 0.8707 |
0.0062 | 38.0 | 1862 | 1.2747 | 0.5259 | 0.6499 | 0.5814 | 0.8692 |
0.0062 | 39.0 | 1911 | 1.2397 | 0.5363 | 0.6590 | 0.5914 | 0.8676 |
0.0062 | 40.0 | 1960 | 1.2358 | 0.5477 | 0.6568 | 0.5973 | 0.8746 |
0.0014 | 41.0 | 2009 | 1.2332 | 0.5367 | 0.6602 | 0.5921 | 0.8745 |
0.0014 | 42.0 | 2058 | 1.2239 | 0.5106 | 0.6602 | 0.5758 | 0.8685 |
0.0014 | 43.0 | 2107 | 1.2163 | 0.5224 | 0.6533 | 0.5806 | 0.8679 |
0.0014 | 44.0 | 2156 | 1.2335 | 0.5349 | 0.6568 | 0.5896 | 0.8694 |
0.0014 | 45.0 | 2205 | 1.3374 | 0.5348 | 0.6236 | 0.5758 | 0.8680 |
0.0014 | 46.0 | 2254 | 1.2287 | 0.5417 | 0.6533 | 0.5923 | 0.8730 |
0.0014 | 47.0 | 2303 | 1.2268 | 0.5536 | 0.6796 | 0.6102 | 0.8789 |
0.0014 | 48.0 | 2352 | 1.2153 | 0.4974 | 0.6568 | 0.5661 | 0.8737 |
0.0014 | 49.0 | 2401 | 1.2180 | 0.5222 | 0.6590 | 0.5827 | 0.8747 |
0.0014 | 50.0 | 2450 | 1.2906 | 0.5500 | 0.6476 | 0.5949 | 0.8698 |
0.0014 | 51.0 | 2499 | 1.2547 | 0.5386 | 0.6384 | 0.5843 | 0.8686 |
0.0018 | 52.0 | 2548 | 1.2792 | 0.5307 | 0.6430 | 0.5815 | 0.8681 |
0.0018 | 53.0 | 2597 | 1.1972 | 0.5040 | 0.6510 | 0.5681 | 0.8705 |
0.0018 | 54.0 | 2646 | 1.2189 | 0.5215 | 0.6533 | 0.5800 | 0.8782 |
0.0018 | 55.0 | 2695 | 1.2239 | 0.5602 | 0.6602 | 0.6061 | 0.8789 |
0.0018 | 56.0 | 2744 | 1.2620 | 0.5410 | 0.6648 | 0.5965 | 0.8773 |
0.0018 | 57.0 | 2793 | 1.2828 | 0.5513 | 0.6522 | 0.5975 | 0.8747 |
0.0018 | 58.0 | 2842 | 1.2633 | 0.5518 | 0.6522 | 0.5978 | 0.8749 |
0.0018 | 59.0 | 2891 | 1.2619 | 0.5356 | 0.6796 | 0.5991 | 0.8738 |
0.0018 | 60.0 | 2940 | 1.2076 | 0.5385 | 0.6716 | 0.5978 | 0.8775 |
0.0018 | 61.0 | 2989 | 1.2996 | 0.5357 | 0.6442 | 0.5849 | 0.8686 |
0.0011 | 62.0 | 3038 | 1.2614 | 0.5483 | 0.6693 | 0.6028 | 0.8773 |
0.0011 | 63.0 | 3087 | 1.2713 | 0.5524 | 0.6579 | 0.6005 | 0.8757 |
0.0011 | 64.0 | 3136 | 1.2920 | 0.5550 | 0.6579 | 0.6021 | 0.8739 |
0.0011 | 65.0 | 3185 | 1.3319 | 0.5623 | 0.6716 | 0.6121 | 0.8713 |
0.0011 | 66.0 | 3234 | 1.3345 | 0.5433 | 0.6533 | 0.5932 | 0.8720 |
0.0011 | 67.0 | 3283 | 1.3146 | 0.5305 | 0.6465 | 0.5828 | 0.8657 |
0.0011 | 68.0 | 3332 | 1.3354 | 0.5452 | 0.6556 | 0.5953 | 0.8691 |
0.0011 | 69.0 | 3381 | 1.3474 | 0.5519 | 0.6693 | 0.6050 | 0.8759 |
0.0011 | 70.0 | 3430 | 1.3498 | 0.5403 | 0.6590 | 0.5938 | 0.8686 |
0.0011 | 71.0 | 3479 | 1.3340 | 0.5387 | 0.6602 | 0.5933 | 0.8749 |
0.0005 | 72.0 | 3528 | 1.3475 | 0.5615 | 0.6636 | 0.6083 | 0.8745 |
0.0005 | 73.0 | 3577 | 1.3530 | 0.5425 | 0.6648 | 0.5974 | 0.8746 |
0.0005 | 74.0 | 3626 | 1.3494 | 0.5491 | 0.6648 | 0.6014 | 0.8738 |
0.0005 | 75.0 | 3675 | 1.3368 | 0.5620 | 0.6590 | 0.6066 | 0.8749 |
0.0005 | 76.0 | 3724 | 1.3382 | 0.5467 | 0.6625 | 0.5991 | 0.8752 |
0.0005 | 77.0 | 3773 | 1.3486 | 0.5377 | 0.6533 | 0.5899 | 0.8759 |
0.0005 | 78.0 | 3822 | 1.3485 | 0.5483 | 0.6499 | 0.5948 | 0.8731 |
0.0005 | 79.0 | 3871 | 1.3512 | 0.5340 | 0.6556 | 0.5886 | 0.8751 |
0.0005 | 80.0 | 3920 | 1.3486 | 0.5513 | 0.6636 | 0.6023 | 0.8772 |
0.0005 | 81.0 | 3969 | 1.3530 | 0.5481 | 0.6579 | 0.5980 | 0.8772 |
0.0001 | 82.0 | 4018 | 1.3940 | 0.5536 | 0.6499 | 0.5979 | 0.8751 |
0.0001 | 83.0 | 4067 | 1.3657 | 0.5296 | 0.6453 | 0.5817 | 0.8742 |
0.0001 | 84.0 | 4116 | 1.3538 | 0.5412 | 0.6384 | 0.5858 | 0.8719 |
0.0001 | 85.0 | 4165 | 1.3550 | 0.5418 | 0.6373 | 0.5857 | 0.8693 |
0.0001 | 86.0 | 4214 | 1.3810 | 0.5187 | 0.6362 | 0.5714 | 0.8685 |
0.0001 | 87.0 | 4263 | 1.3625 | 0.5370 | 0.6396 | 0.5838 | 0.8707 |
0.0001 | 88.0 | 4312 | 1.3605 | 0.5389 | 0.6419 | 0.5859 | 0.8712 |
0.0001 | 89.0 | 4361 | 1.3616 | 0.5388 | 0.6430 | 0.5863 | 0.8711 |
0.0001 | 90.0 | 4410 | 1.3560 | 0.5431 | 0.6419 | 0.5884 | 0.8719 |
0.0001 | 91.0 | 4459 | 1.3558 | 0.5399 | 0.6430 | 0.5869 | 0.8716 |
0.0001 | 92.0 | 4508 | 1.3586 | 0.5342 | 0.6430 | 0.5836 | 0.8717 |
0.0001 | 93.0 | 4557 | 1.3727 | 0.5349 | 0.6487 | 0.5863 | 0.8716 |
0.0001 | 94.0 | 4606 | 1.3810 | 0.5539 | 0.6465 | 0.5966 | 0.8707 |
0.0001 | 95.0 | 4655 | 1.3813 | 0.5540 | 0.6453 | 0.5962 | 0.8705 |
0.0001 | 96.0 | 4704 | 1.3879 | 0.5625 | 0.6487 | 0.6026 | 0.8699 |
0.0001 | 97.0 | 4753 | 1.3886 | 0.5614 | 0.6487 | 0.6019 | 0.8702 |
0.0001 | 98.0 | 4802 | 1.3811 | 0.5470 | 0.6453 | 0.5921 | 0.8704 |
0.0001 | 99.0 | 4851 | 1.3788 | 0.5407 | 0.6453 | 0.5884 | 0.8709 |
0.0001 | 100.0 | 4900 | 1.3788 | 0.5418 | 0.6453 | 0.5890 | 0.8708 |
Framework versions
- Transformers 4.27.0.dev0
- Pytorch 1.13.0
- Datasets 2.8.0
- Tokenizers 0.12.1