<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->
clinico-roberta-biomedical-finetuned
This model is a fine-tuned version of joheras/roberta-base-biomedical-clinical-es-finetuned-clinais on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.9272
- Precision: 0.5095
- Recall: 0.6463
- F1: 0.5698
- Accuracy: 0.8623
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 1.0 | 25 | 1.2199 | 0.0033 | 0.0053 | 0.0040 | 0.5756 |
No log | 2.0 | 50 | 0.7306 | 0.2031 | 0.2642 | 0.2296 | 0.8021 |
No log | 3.0 | 75 | 0.6366 | 0.2967 | 0.3811 | 0.3336 | 0.8235 |
No log | 4.0 | 100 | 0.6135 | 0.3497 | 0.4653 | 0.3993 | 0.8304 |
No log | 5.0 | 125 | 0.5845 | 0.3421 | 0.4537 | 0.3900 | 0.8331 |
No log | 6.0 | 150 | 0.5697 | 0.3307 | 0.4421 | 0.3784 | 0.8390 |
No log | 7.0 | 175 | 0.5415 | 0.3211 | 0.4495 | 0.3746 | 0.8471 |
No log | 8.0 | 200 | 0.5430 | 0.3589 | 0.5179 | 0.4240 | 0.8567 |
No log | 9.0 | 225 | 0.5513 | 0.3342 | 0.5474 | 0.4150 | 0.8604 |
No log | 10.0 | 250 | 0.5681 | 0.3769 | 0.5768 | 0.4559 | 0.8582 |
No log | 11.0 | 275 | 0.5813 | 0.3756 | 0.5863 | 0.4579 | 0.8553 |
No log | 12.0 | 300 | 0.6096 | 0.4181 | 0.5968 | 0.4918 | 0.8574 |
No log | 13.0 | 325 | 0.6318 | 0.3978 | 0.6042 | 0.4797 | 0.8539 |
No log | 14.0 | 350 | 0.6309 | 0.3892 | 0.5968 | 0.4711 | 0.8553 |
No log | 15.0 | 375 | 0.6559 | 0.3987 | 0.5968 | 0.4781 | 0.8565 |
No log | 16.0 | 400 | 0.6391 | 0.4275 | 0.6021 | 0.5 | 0.8560 |
No log | 17.0 | 425 | 0.6812 | 0.4388 | 0.6074 | 0.5095 | 0.8584 |
No log | 18.0 | 450 | 0.6901 | 0.4287 | 0.6137 | 0.5048 | 0.8563 |
No log | 19.0 | 475 | 0.6834 | 0.4572 | 0.6074 | 0.5217 | 0.8581 |
0.3478 | 20.0 | 500 | 0.7050 | 0.4397 | 0.6179 | 0.5138 | 0.8573 |
0.3478 | 21.0 | 525 | 0.7004 | 0.4462 | 0.6242 | 0.5204 | 0.8591 |
0.3478 | 22.0 | 550 | 0.7038 | 0.4264 | 0.6126 | 0.5028 | 0.8599 |
0.3478 | 23.0 | 575 | 0.7384 | 0.4416 | 0.6284 | 0.5187 | 0.8576 |
0.3478 | 24.0 | 600 | 0.7197 | 0.4479 | 0.62 | 0.5201 | 0.8619 |
0.3478 | 25.0 | 625 | 0.7412 | 0.4381 | 0.6221 | 0.5141 | 0.8559 |
0.3478 | 26.0 | 650 | 0.7535 | 0.4489 | 0.6242 | 0.5222 | 0.8566 |
0.3478 | 27.0 | 675 | 0.7534 | 0.4657 | 0.6432 | 0.5402 | 0.8586 |
0.3478 | 28.0 | 700 | 0.7672 | 0.4525 | 0.6168 | 0.5220 | 0.8567 |
0.3478 | 29.0 | 725 | 0.7680 | 0.4637 | 0.6316 | 0.5348 | 0.8599 |
0.3478 | 30.0 | 750 | 0.7590 | 0.4611 | 0.6242 | 0.5304 | 0.8607 |
0.3478 | 31.0 | 775 | 0.7671 | 0.4732 | 0.6326 | 0.5414 | 0.8625 |
0.3478 | 32.0 | 800 | 0.7921 | 0.4674 | 0.6337 | 0.5380 | 0.8590 |
0.3478 | 33.0 | 825 | 0.8037 | 0.4828 | 0.6358 | 0.5488 | 0.8574 |
0.3478 | 34.0 | 850 | 0.8376 | 0.4644 | 0.6242 | 0.5326 | 0.8534 |
0.3478 | 35.0 | 875 | 0.8346 | 0.4815 | 0.6284 | 0.5452 | 0.8552 |
0.3478 | 36.0 | 900 | 0.8249 | 0.4750 | 0.6305 | 0.5418 | 0.8567 |
0.3478 | 37.0 | 925 | 0.8420 | 0.4580 | 0.6305 | 0.5306 | 0.8548 |
0.3478 | 38.0 | 950 | 0.8341 | 0.4773 | 0.6305 | 0.5433 | 0.8550 |
0.3478 | 39.0 | 975 | 0.8085 | 0.4792 | 0.6316 | 0.5450 | 0.8653 |
0.0274 | 40.0 | 1000 | 0.7954 | 0.4992 | 0.6474 | 0.5637 | 0.8651 |
0.0274 | 41.0 | 1025 | 0.8145 | 0.4923 | 0.6421 | 0.5573 | 0.8635 |
0.0274 | 42.0 | 1050 | 0.8290 | 0.4911 | 0.6368 | 0.5545 | 0.8610 |
0.0274 | 43.0 | 1075 | 0.8468 | 0.4821 | 0.6379 | 0.5492 | 0.8571 |
0.0274 | 44.0 | 1100 | 0.8274 | 0.4791 | 0.6389 | 0.5476 | 0.8625 |
0.0274 | 45.0 | 1125 | 0.8583 | 0.4831 | 0.6305 | 0.5470 | 0.8551 |
0.0274 | 46.0 | 1150 | 0.8420 | 0.4726 | 0.6347 | 0.5418 | 0.8589 |
0.0274 | 47.0 | 1175 | 0.8631 | 0.5029 | 0.64 | 0.5632 | 0.8564 |
0.0274 | 48.0 | 1200 | 0.8421 | 0.4911 | 0.64 | 0.5558 | 0.8617 |
0.0274 | 49.0 | 1225 | 0.8564 | 0.5071 | 0.6411 | 0.5662 | 0.8631 |
0.0274 | 50.0 | 1250 | 0.8659 | 0.4845 | 0.6263 | 0.5464 | 0.8603 |
0.0274 | 51.0 | 1275 | 0.8596 | 0.4860 | 0.64 | 0.5525 | 0.8632 |
0.0274 | 52.0 | 1300 | 0.8713 | 0.4856 | 0.6368 | 0.5510 | 0.8593 |
0.0274 | 53.0 | 1325 | 0.8888 | 0.4868 | 0.64 | 0.5530 | 0.8585 |
0.0274 | 54.0 | 1350 | 0.8591 | 0.4816 | 0.6337 | 0.5473 | 0.8610 |
0.0274 | 55.0 | 1375 | 0.8755 | 0.4996 | 0.64 | 0.5611 | 0.8615 |
0.0274 | 56.0 | 1400 | 0.8749 | 0.5095 | 0.6484 | 0.5706 | 0.8583 |
0.0274 | 57.0 | 1425 | 0.8867 | 0.5025 | 0.6453 | 0.5650 | 0.8580 |
0.0274 | 58.0 | 1450 | 0.8905 | 0.4947 | 0.6337 | 0.5556 | 0.8579 |
0.0274 | 59.0 | 1475 | 0.8911 | 0.4881 | 0.6495 | 0.5574 | 0.8596 |
0.0099 | 60.0 | 1500 | 0.9220 | 0.4914 | 0.6347 | 0.5540 | 0.8570 |
0.0099 | 61.0 | 1525 | 0.8687 | 0.4786 | 0.6368 | 0.5465 | 0.8594 |
0.0099 | 62.0 | 1550 | 0.9080 | 0.4906 | 0.6337 | 0.5531 | 0.8575 |
0.0099 | 63.0 | 1575 | 0.9004 | 0.4831 | 0.6337 | 0.5483 | 0.8583 |
0.0099 | 64.0 | 1600 | 0.8906 | 0.4778 | 0.6337 | 0.5448 | 0.8619 |
0.0099 | 65.0 | 1625 | 0.8870 | 0.4959 | 0.6368 | 0.5576 | 0.8618 |
0.0099 | 66.0 | 1650 | 0.8843 | 0.4851 | 0.6358 | 0.5503 | 0.8611 |
0.0099 | 67.0 | 1675 | 0.8923 | 0.4912 | 0.6453 | 0.5578 | 0.8618 |
0.0099 | 68.0 | 1700 | 0.8864 | 0.4898 | 0.6337 | 0.5525 | 0.8615 |
0.0099 | 69.0 | 1725 | 0.8974 | 0.4943 | 0.6411 | 0.5582 | 0.8615 |
0.0099 | 70.0 | 1750 | 0.8851 | 0.4821 | 0.6379 | 0.5492 | 0.8611 |
0.0099 | 71.0 | 1775 | 0.8958 | 0.4920 | 0.6453 | 0.5583 | 0.8593 |
0.0099 | 72.0 | 1800 | 0.8880 | 0.4988 | 0.6411 | 0.5610 | 0.8618 |
0.0099 | 73.0 | 1825 | 0.8959 | 0.4852 | 0.6379 | 0.5512 | 0.8606 |
0.0099 | 74.0 | 1850 | 0.9036 | 0.4773 | 0.6305 | 0.5433 | 0.8598 |
0.0099 | 75.0 | 1875 | 0.9031 | 0.4864 | 0.6389 | 0.5523 | 0.8615 |
0.0099 | 76.0 | 1900 | 0.9243 | 0.4907 | 0.6368 | 0.5543 | 0.8590 |
0.0099 | 77.0 | 1925 | 0.9285 | 0.4877 | 0.6453 | 0.5555 | 0.8590 |
0.0099 | 78.0 | 1950 | 0.9261 | 0.5074 | 0.6516 | 0.5705 | 0.8598 |
0.0099 | 79.0 | 1975 | 0.9374 | 0.5037 | 0.64 | 0.5637 | 0.8580 |
0.0061 | 80.0 | 2000 | 0.9165 | 0.5021 | 0.6316 | 0.5594 | 0.8621 |
0.0061 | 81.0 | 2025 | 0.9307 | 0.5162 | 0.6368 | 0.5702 | 0.8582 |
0.0061 | 82.0 | 2050 | 0.9369 | 0.4911 | 0.6358 | 0.5541 | 0.8574 |
0.0061 | 83.0 | 2075 | 0.9293 | 0.5191 | 0.6421 | 0.5741 | 0.8584 |
0.0061 | 84.0 | 2100 | 0.9187 | 0.5004 | 0.6453 | 0.5637 | 0.8629 |
0.0061 | 85.0 | 2125 | 0.9293 | 0.4927 | 0.6379 | 0.5560 | 0.8623 |
0.0061 | 86.0 | 2150 | 0.9200 | 0.5041 | 0.6453 | 0.5660 | 0.8634 |
0.0061 | 87.0 | 2175 | 0.9273 | 0.4992 | 0.6421 | 0.5617 | 0.8631 |
0.0061 | 88.0 | 2200 | 0.9325 | 0.5021 | 0.6442 | 0.5643 | 0.8623 |
0.0061 | 89.0 | 2225 | 0.9245 | 0.4844 | 0.6389 | 0.5511 | 0.8630 |
0.0061 | 90.0 | 2250 | 0.9291 | 0.4979 | 0.6368 | 0.5589 | 0.8593 |
0.0061 | 91.0 | 2275 | 0.9264 | 0.5083 | 0.6432 | 0.5678 | 0.8622 |
0.0061 | 92.0 | 2300 | 0.9283 | 0.5025 | 0.6411 | 0.5634 | 0.8619 |
0.0061 | 93.0 | 2325 | 0.9264 | 0.5008 | 0.6442 | 0.5635 | 0.8613 |
0.0061 | 94.0 | 2350 | 0.9205 | 0.5079 | 0.6463 | 0.5688 | 0.8626 |
0.0061 | 95.0 | 2375 | 0.9223 | 0.5121 | 0.6484 | 0.5722 | 0.8625 |
0.0061 | 96.0 | 2400 | 0.9244 | 0.5045 | 0.6421 | 0.5651 | 0.8620 |
0.0061 | 97.0 | 2425 | 0.9248 | 0.5062 | 0.6463 | 0.5677 | 0.8622 |
0.0061 | 98.0 | 2450 | 0.9277 | 0.5037 | 0.6453 | 0.5658 | 0.8621 |
0.0061 | 99.0 | 2475 | 0.9272 | 0.5083 | 0.6463 | 0.5690 | 0.8623 |
0.0046 | 100.0 | 2500 | 0.9272 | 0.5095 | 0.6463 | 0.5698 | 0.8623 |
Framework versions
- Transformers 4.27.0.dev0
- Pytorch 1.13.0
- Datasets 2.8.0
- Tokenizers 0.12.1