Model Card of vocabtrimmer/mt5-small-trimmed-ru-90000-ruquad-qg
This model is fine-tuned version of vocabtrimmer/mt5-small-trimmed-ru-90000 for question generation task on the lmqg/qg_ruquad (dataset_name: default) via lmqg.
Overview
- Language model: vocabtrimmer/mt5-small-trimmed-ru-90000
 - Language: ru
 - Training data: lmqg/qg_ruquad (default)
 - Online Demo: https://autoqg.net/
 - Repository: https://github.com/asahi417/lm-question-generation
 - Paper: https://arxiv.org/abs/2210.03992
 
Usage
- With 
lmqg 
from lmqg import TransformersQG
# initialize model
model = TransformersQG(language="ru", model="vocabtrimmer/mt5-small-trimmed-ru-90000-ruquad-qg")
# model prediction
questions = model.generate_q(list_context="Нелишним будет отметить, что, развивая это направление, Д. И. Менделеев, поначалу априорно выдвинув идею о температуре, при которой высота мениска будет нулевой, в мае 1860 года провёл серию опытов.", list_answer="в мае 1860 года")
- With 
transformers 
from transformers import pipeline
pipe = pipeline("text2text-generation", "vocabtrimmer/mt5-small-trimmed-ru-90000-ruquad-qg")
output = pipe("Нелишним будет отметить, что, развивая это направление, Д. И. Менделеев, поначалу априорно выдвинув идею о температуре, при которой высота мениска будет нулевой, <hl> в мае 1860 года <hl> провёл серию опытов.")
Evaluation
- Metric (Question Generation): raw metric file
 
| Score | Type | Dataset | |
|---|---|---|---|
| BERTScore | 86.65 | default | lmqg/qg_ruquad | 
| Bleu_1 | 34.9 | default | lmqg/qg_ruquad | 
| Bleu_2 | 27.92 | default | lmqg/qg_ruquad | 
| Bleu_3 | 22.75 | default | lmqg/qg_ruquad | 
| Bleu_4 | 18.77 | default | lmqg/qg_ruquad | 
| METEOR | 29.16 | default | lmqg/qg_ruquad | 
| MoverScore | 65.33 | default | lmqg/qg_ruquad | 
| ROUGE_L | 34.21 | default | lmqg/qg_ruquad | 
Training hyperparameters
The following hyperparameters were used during fine-tuning:
- dataset_path: lmqg/qg_ruquad
 - dataset_name: default
 - input_types: paragraph_answer
 - output_types: question
 - prefix_types: None
 - model: vocabtrimmer/mt5-small-trimmed-ru-90000
 - max_length: 512
 - max_length_output: 32
 - epoch: 16
 - batch: 16
 - lr: 0.0005
 - fp16: False
 - random_seed: 1
 - gradient_accumulation_steps: 4
 - label_smoothing: 0.15
 
The full configuration can be found at fine-tuning config file.
Citation
@inproceedings{ushio-etal-2022-generative,
    title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
    author = "Ushio, Asahi  and
        Alva-Manchego, Fernando  and
        Camacho-Collados, Jose",
    booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
    month = dec,
    year = "2022",
    address = "Abu Dhabi, U.A.E.",
    publisher = "Association for Computational Linguistics",
}