<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->
clinico-xlm-roberta-large-finetuned-augmented1
This model is a fine-tuned version of joheras/xlm-roberta-base-finetuned-clinais on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.4632
- Precision: 0.5074
- Recall: 0.6293
- F1: 0.5618
- Accuracy: 0.8560
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 1.0 | 179 | 0.6074 | 0.3003 | 0.5057 | 0.3768 | 0.8147 |
No log | 2.0 | 358 | 0.5758 | 0.3091 | 0.5263 | 0.3895 | 0.8415 |
0.4921 | 3.0 | 537 | 0.7089 | 0.3357 | 0.5503 | 0.4170 | 0.8438 |
0.4921 | 4.0 | 716 | 0.8219 | 0.3541 | 0.5789 | 0.4394 | 0.8391 |
0.4921 | 5.0 | 895 | 0.8857 | 0.4050 | 0.5950 | 0.4819 | 0.8507 |
0.0628 | 6.0 | 1074 | 0.9386 | 0.3888 | 0.5961 | 0.4706 | 0.8485 |
0.0628 | 7.0 | 1253 | 1.0302 | 0.4072 | 0.6201 | 0.4916 | 0.8458 |
0.0628 | 8.0 | 1432 | 0.9960 | 0.4352 | 0.6144 | 0.5095 | 0.8535 |
0.0195 | 9.0 | 1611 | 1.0593 | 0.4349 | 0.6190 | 0.5109 | 0.8546 |
0.0195 | 10.0 | 1790 | 1.1262 | 0.4366 | 0.6190 | 0.5121 | 0.8512 |
0.0195 | 11.0 | 1969 | 1.1968 | 0.4675 | 0.6178 | 0.5323 | 0.8498 |
0.0085 | 12.0 | 2148 | 1.1940 | 0.4368 | 0.6167 | 0.5114 | 0.8472 |
0.0085 | 13.0 | 2327 | 1.1795 | 0.4670 | 0.6224 | 0.5336 | 0.8588 |
0.0043 | 14.0 | 2506 | 1.2596 | 0.4791 | 0.6281 | 0.5436 | 0.8534 |
0.0043 | 15.0 | 2685 | 1.2958 | 0.4580 | 0.6236 | 0.5281 | 0.8504 |
0.0043 | 16.0 | 2864 | 1.2891 | 0.4977 | 0.6270 | 0.5549 | 0.8533 |
0.0022 | 17.0 | 3043 | 1.2992 | 0.4615 | 0.6178 | 0.5284 | 0.8504 |
0.0022 | 18.0 | 3222 | 1.3102 | 0.4681 | 0.5961 | 0.5244 | 0.8549 |
0.0022 | 19.0 | 3401 | 1.2654 | 0.4485 | 0.6178 | 0.5197 | 0.8602 |
0.0027 | 20.0 | 3580 | 1.3123 | 0.4420 | 0.6064 | 0.5113 | 0.8479 |
0.0027 | 21.0 | 3759 | 1.3100 | 0.4877 | 0.6350 | 0.5517 | 0.8554 |
0.0027 | 22.0 | 3938 | 1.3696 | 0.4683 | 0.6247 | 0.5353 | 0.8532 |
0.0013 | 23.0 | 4117 | 1.3392 | 0.4851 | 0.5973 | 0.5354 | 0.8536 |
0.0013 | 24.0 | 4296 | 1.3680 | 0.4946 | 0.6270 | 0.5530 | 0.8509 |
0.0013 | 25.0 | 4475 | 1.4145 | 0.4914 | 0.6236 | 0.5497 | 0.8512 |
0.0014 | 26.0 | 4654 | 1.2962 | 0.5 | 0.6327 | 0.5586 | 0.8634 |
0.0014 | 27.0 | 4833 | 1.3871 | 0.4743 | 0.6327 | 0.5422 | 0.8532 |
0.0014 | 28.0 | 5012 | 1.3761 | 0.4982 | 0.6430 | 0.5614 | 0.8562 |
0.0014 | 29.0 | 5191 | 1.3929 | 0.4764 | 0.6224 | 0.5397 | 0.8501 |
0.0014 | 30.0 | 5370 | 1.3716 | 0.4862 | 0.6270 | 0.5477 | 0.8558 |
0.0006 | 31.0 | 5549 | 1.3881 | 0.4573 | 0.6247 | 0.5280 | 0.8566 |
0.0006 | 32.0 | 5728 | 1.3783 | 0.4688 | 0.6350 | 0.5394 | 0.8591 |
0.0006 | 33.0 | 5907 | 1.4211 | 0.5060 | 0.6293 | 0.5609 | 0.8585 |
0.001 | 34.0 | 6086 | 1.4034 | 0.4819 | 0.6236 | 0.5436 | 0.8566 |
0.001 | 35.0 | 6265 | 1.4026 | 0.5168 | 0.6339 | 0.5694 | 0.8592 |
0.001 | 36.0 | 6444 | 1.4153 | 0.4904 | 0.6419 | 0.5560 | 0.8586 |
0.0003 | 37.0 | 6623 | 1.4071 | 0.5161 | 0.6224 | 0.5643 | 0.8569 |
0.0003 | 38.0 | 6802 | 1.4308 | 0.5046 | 0.6293 | 0.5601 | 0.8562 |
0.0003 | 39.0 | 6981 | 1.4089 | 0.5083 | 0.6339 | 0.5642 | 0.8597 |
0.0001 | 40.0 | 7160 | 1.4522 | 0.5093 | 0.6293 | 0.5629 | 0.8543 |
0.0001 | 41.0 | 7339 | 1.4427 | 0.4964 | 0.6224 | 0.5523 | 0.8545 |
0.0001 | 42.0 | 7518 | 1.4641 | 0.4759 | 0.6213 | 0.5390 | 0.8513 |
0.0001 | 43.0 | 7697 | 1.4405 | 0.5014 | 0.6293 | 0.5581 | 0.8595 |
0.0001 | 44.0 | 7876 | 1.4584 | 0.5060 | 0.6281 | 0.5605 | 0.8555 |
0.0002 | 45.0 | 8055 | 1.4847 | 0.5157 | 0.6201 | 0.5631 | 0.8526 |
0.0002 | 46.0 | 8234 | 1.4545 | 0.4977 | 0.6270 | 0.5549 | 0.8577 |
0.0002 | 47.0 | 8413 | 1.4482 | 0.5106 | 0.6339 | 0.5656 | 0.8570 |
0.0001 | 48.0 | 8592 | 1.4639 | 0.5074 | 0.6281 | 0.5613 | 0.8563 |
0.0001 | 49.0 | 8771 | 1.4643 | 0.5088 | 0.6270 | 0.5618 | 0.8563 |
0.0001 | 50.0 | 8950 | 1.4632 | 0.5074 | 0.6293 | 0.5618 | 0.8560 |
Framework versions
- Transformers 4.27.0.dev0
- Pytorch 1.13.0
- Datasets 2.8.0
- Tokenizers 0.12.1