biology genomics single-cell model_cls_name:SCANVI scvi_version:0.20.3 anndata_version:0.8.0 modality:rna tissue:lung annotated:True

Description

The single cell lung cancer atlas is a resource integrating more than 1.2 million cells from 309 patients across 29 datasets.

Model properties

Many model properties are in the model tags. Some more are listed below.

model_init_params:

{
    "n_hidden": 128,
    "n_latent": 10,
    "n_layers": 2,
    "dropout_rate": 0.2,
    "dispersion": "gene",
    "gene_likelihood": "zinb",
    "latent_distribution": "normal",
    "use_layer_norm": "both",
    "use_batch_norm": "none",
    "encode_covariates": true
}

model_setup_anndata_args:

{
    "labels_key": "cell_type",
    "unlabeled_category": "unknown",
    "layer": null,
    "batch_key": "sample",
    "size_factor_key": null,
    "categorical_covariate_keys": null,
    "continuous_covariate_keys": null
}

model_summary_stats:

Summary Stat Key Value
n_batch 505
n_cells 892296
n_extra_categorical_covs 0
n_extra_continuous_covs 0
n_labels 45
n_latent_qzm 10
n_latent_qzv 10
n_vars 6000

model_data_registry:

Registry Key scvi-tools Location
X adata.X
batch adata.obs['_scvi_batch']
labels adata.obs['_scvi_labels']
latent_qzm adata.obsm['_scanvi_latent_qzm']
latent_qzv adata.obsm['_scanvi_latent_qzv']
minify_type adata.uns['_scvi_adata_minify_type']
observed_lib_size adata.obs['_scanvi_observed_lib_size']

model_parent_module: scvi.model

data_is_minified: True

Training data

This is an optional link to where the training data is stored if it is too large to host on the huggingface Model hub.

<!-- If your model is not uploaded with any data (e.g., minified data) on the Model Hub, then make sure to provide this field if you want users to be able to access your training data. See the scvi-tools documentation for details. -->

Training data url: https://zenodo.org/record/7227571/files/core_atlas_scanvi_model.tar.gz

Training code

This is an optional link to the code used to train the model.

Training code url: https://github.com/icbi-lab/luca

References

High-resolution single-cell atlas reveals diversity and plasticity of tissue-resident neutrophils in non-small cell lung cancer. S Salcher, G Sturm, L Horvath, G Untergasser, C Kuempers, G Fotakis, E Panizzolo, A Martowicz, M Trebo, G Pall, G Gamerith, M Sykora, F Augustin, K Schmitz, F Finotello, D Rieder, S Perner, S Sopper, D Wolf, A Pircher, Z Trajanoski. Cancer Cell. 2022; 40 (12): 1503-1520.e8. https: //doi.org/10.1016/j.ccell.2022.10.008