Spanish CelebA Roberta-base-bne celebFaces Attributes

RoBERTa base BNE trained with data from the descriptive text corpus of the CelebA dataset

Overview

Description

In order to improve the RoBERTa-large-bne encoder performance, this model has been trained using the generated corpus (in this respository) and following the strategy of using a Siamese network together with the loss function of cosine similarity. The following steps were followed:

The total training time using the sentence-transformer library in Python was 42 days using all the available GPUs of the server, and with exclusive dedication.

A comparison was made between the Spearman's correlation for 1000 test sentences between the base model and our trained model. As can be seen in the following table, our model obtains better results (correlation closer to 1).

Models Spearman's correlation
RoBERTa-base-bne 0.827176427
RoBERTa-celebA-Sp 0.999913276

How to use

Downloading the model results in a directory called roberta-large-bne-celebAEs-UNI that contains its main files. To make use of the model use the following code in Python:

from sentence_transformers import SentenceTransformer, InputExample, models, losses, util, evaluation
model_sbert = SentenceTransformer('roberta-large-bne-celebAEs-UNI')
caption = ['La mujer tiene pomulos altos. Su cabello es de color negro.
            Tiene las cejas arqueadas y la boca ligeramente abierta.
            La joven y atractiva mujer sonriente tiene mucho maquillaje.
            Lleva aretes, collar y lapiz labial.']
vector = model_sbert.encode(captions)
print(vector)

Results

As a result, the encoder will generate a numeric vector whose dimension is 1024.

>>$ print(vector)
>>$ [0.2,0.5,0.45,........0.9]
>>$ len(vector)
>>$ 1024

More information

To see more detailed information about the implementation visit the following link.

Licensing information

This model is available under the CC BY-NC 4.0.

Citation information

Citing: If you used RoBERTa+CelebA model in your work, please cite the ????:

<!--```bib @article{inffus_TINTO, title = {A novel deep learning approach using blurring image techniques for Bluetooth-based indoor localisation}, journal = {Information Fusion}, author = {Reewos Talla-Chumpitaz and Manuel Castillo-Cara and Luis Orozco-Barbosa and Raúl García-Castro}, volume = {91}, pages = {173-186}, year = {2023}, issn = {1566-2535}, doi = {https://doi.org/10.1016/j.inffus.2022.10.011} }


## Autors
- [Eduardo Yauri Lozano](https://github.com/eduar03yauri)
- [Manuel Castillo-Cara](https://github.com/manwestc)
- [Raúl García-Castro](https://github.com/rgcmme)

[*Universidad Nacional de Ingeniería*](https://www.uni.edu.pe/), [*Ontology Engineering Group*](https://oeg.fi.upm.es/), [*Universidad Politécnica de Madrid.*](https://www.upm.es/internacional)

## Contributors
See the full list of contributors and more resources [here](https://github.com/eduar03yauri/DCGAN-text2face-forSpanish).

<kbd><img src="https://www.uni.edu.pe/images/logos/logo_uni_2016.png" alt="Universidad Politécnica de Madrid" width="100"></kbd>
<kbd><img src="https://raw.githubusercontent.com/oeg-upm/TINTO/main/assets/logo-oeg.png" alt="Ontology Engineering Group" width="100"></kbd> 
<kbd><img src="https://raw.githubusercontent.com/oeg-upm/TINTO/main/assets/logo-upm.png" alt="Universidad Politécnica de Madrid" width="100"></kbd>