<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->
combine-20-vsfc-xlm-r
This model is a fine-tuned version of xlm-roberta-base on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.2322
- Precision: 0.9414
- Recall: 0.9438
- F1 Weighted: 0.9409
- F1 Macro: 0.8449
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 64
- eval_batch_size: 128
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 Weighted | F1 Macro |
---|---|---|---|---|---|---|---|
0.9866 | 0.12 | 25 | 0.8014 | 0.7299 | 0.7088 | 0.6862 | 0.4808 |
0.7581 | 0.24 | 50 | 0.5130 | 0.8573 | 0.8920 | 0.8717 | 0.6086 |
0.5523 | 0.36 | 75 | 0.4340 | 0.8637 | 0.9021 | 0.8812 | 0.6154 |
0.4144 | 0.47 | 100 | 0.3586 | 0.8664 | 0.9052 | 0.8841 | 0.6176 |
0.4314 | 0.59 | 125 | 0.2651 | 0.8946 | 0.9172 | 0.9009 | 0.6580 |
0.3391 | 0.71 | 150 | 0.2658 | 0.9078 | 0.9204 | 0.9116 | 0.7174 |
0.3441 | 0.83 | 175 | 0.2518 | 0.9198 | 0.9286 | 0.9190 | 0.7342 |
0.3624 | 0.95 | 200 | 0.2484 | 0.9273 | 0.9318 | 0.9173 | 0.7057 |
0.2703 | 1.07 | 225 | 0.2388 | 0.9348 | 0.9356 | 0.9261 | 0.7638 |
0.2913 | 1.18 | 250 | 0.2496 | 0.9281 | 0.9311 | 0.9209 | 0.7485 |
0.3268 | 1.3 | 275 | 0.2504 | 0.9317 | 0.9349 | 0.9279 | 0.7856 |
0.2692 | 1.42 | 300 | 0.2163 | 0.9277 | 0.9305 | 0.9239 | 0.7874 |
0.2913 | 1.54 | 325 | 0.2264 | 0.9270 | 0.9311 | 0.9256 | 0.7919 |
0.2416 | 1.66 | 350 | 0.2304 | 0.9371 | 0.9387 | 0.9333 | 0.8128 |
0.2158 | 1.78 | 375 | 0.2419 | 0.9359 | 0.9381 | 0.9338 | 0.8206 |
0.2593 | 1.9 | 400 | 0.2269 | 0.9382 | 0.9419 | 0.9370 | 0.8136 |
0.2331 | 2.01 | 425 | 0.2534 | 0.9364 | 0.9387 | 0.9341 | 0.8172 |
0.2067 | 2.13 | 450 | 0.2199 | 0.9404 | 0.9438 | 0.9407 | 0.8330 |
0.2102 | 2.25 | 475 | 0.2429 | 0.9288 | 0.9305 | 0.9270 | 0.8193 |
0.1696 | 2.37 | 500 | 0.2271 | 0.9378 | 0.9406 | 0.9382 | 0.8353 |
0.2598 | 2.49 | 525 | 0.2175 | 0.9360 | 0.9394 | 0.9370 | 0.8256 |
0.243 | 2.61 | 550 | 0.1947 | 0.9457 | 0.9482 | 0.9458 | 0.8520 |
0.1944 | 2.73 | 575 | 0.2052 | 0.9419 | 0.9450 | 0.9419 | 0.8354 |
0.1839 | 2.84 | 600 | 0.2186 | 0.9405 | 0.9425 | 0.9389 | 0.8358 |
0.1829 | 2.96 | 625 | 0.1944 | 0.9455 | 0.9476 | 0.9456 | 0.8583 |
0.1705 | 3.08 | 650 | 0.2410 | 0.9355 | 0.9387 | 0.9348 | 0.8223 |
0.1258 | 3.2 | 675 | 0.2225 | 0.9381 | 0.9400 | 0.9386 | 0.8475 |
0.11 | 3.32 | 700 | 0.2311 | 0.9410 | 0.9438 | 0.9417 | 0.8431 |
0.1619 | 3.44 | 725 | 0.2129 | 0.9411 | 0.9431 | 0.9419 | 0.8470 |
0.1698 | 3.55 | 750 | 0.2254 | 0.9388 | 0.9413 | 0.9395 | 0.8419 |
0.1495 | 3.67 | 775 | 0.2185 | 0.9408 | 0.9438 | 0.9403 | 0.8337 |
0.0989 | 3.79 | 800 | 0.2322 | 0.9414 | 0.9438 | 0.9409 | 0.8449 |
Framework versions
- Transformers 4.27.1
- Pytorch 1.13.1+cu116
- Datasets 2.10.1
- Tokenizers 0.13.2