<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->
bert-finetuned-ner
This model is a fine-tuned version of bert-base-cased on the conll2003 dataset. It achieves the following results on the evaluation set:
- Loss: 0.0591
- Precision: 0.9328
- Recall: 0.9515
- F1: 0.9421
- Accuracy: 0.9866
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.088 | 1.0 | 1756 | 0.0673 | 0.9190 | 0.9334 | 0.9261 | 0.9823 |
0.0346 | 2.0 | 3512 | 0.0611 | 0.9284 | 0.9477 | 0.9380 | 0.9855 |
0.0178 | 3.0 | 5268 | 0.0591 | 0.9328 | 0.9515 | 0.9421 | 0.9866 |
Framework versions
- Transformers 4.27.3
- Pytorch 1.13.1+cu116
- Datasets 2.10.1
- Tokenizers 0.13.2