<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->
roberta-base-mnli_AppE
This model is a fine-tuned version of WillHeld/roberta-base-mnli on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.7433
- Acc: 0.8622
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Acc |
---|---|---|---|---|
0.3562 | 0.17 | 2000 | 0.4166 | 0.8524 |
0.3414 | 0.33 | 4000 | 0.4399 | 0.8476 |
0.3308 | 0.5 | 6000 | 0.3951 | 0.8561 |
0.3306 | 0.67 | 8000 | 0.4152 | 0.8488 |
0.3295 | 0.83 | 10000 | 0.3917 | 0.8575 |
0.3288 | 1.0 | 12000 | 0.4095 | 0.8581 |
0.229 | 1.17 | 14000 | 0.4420 | 0.8611 |
0.2307 | 1.33 | 16000 | 0.4876 | 0.8561 |
0.2334 | 1.5 | 18000 | 0.4496 | 0.8577 |
0.2392 | 1.67 | 20000 | 0.4188 | 0.8608 |
0.233 | 1.83 | 22000 | 0.4493 | 0.8578 |
0.2343 | 2.0 | 24000 | 0.4278 | 0.8603 |
0.163 | 2.17 | 26000 | 0.5700 | 0.8635 |
0.1657 | 2.33 | 28000 | 0.5323 | 0.8561 |
0.1652 | 2.5 | 30000 | 0.5047 | 0.8589 |
0.1654 | 2.67 | 32000 | 0.5082 | 0.8590 |
0.1659 | 2.83 | 34000 | 0.5076 | 0.8631 |
0.1654 | 3.0 | 36000 | 0.5036 | 0.8612 |
0.1195 | 3.17 | 38000 | 0.6221 | 0.8600 |
0.1194 | 3.33 | 40000 | 0.6467 | 0.8575 |
0.1205 | 3.5 | 42000 | 0.6742 | 0.8578 |
0.1209 | 3.67 | 44000 | 0.6537 | 0.8580 |
0.1234 | 3.83 | 46000 | 0.6385 | 0.8580 |
0.122 | 4.0 | 48000 | 0.6104 | 0.8628 |
0.0937 | 4.17 | 50000 | 0.7261 | 0.8603 |
0.0941 | 4.33 | 52000 | 0.7634 | 0.8607 |
0.0926 | 4.5 | 54000 | 0.7737 | 0.8617 |
0.093 | 4.67 | 56000 | 0.7577 | 0.8633 |
0.0918 | 4.83 | 58000 | 0.7535 | 0.8631 |
0.0935 | 5.0 | 60000 | 0.7433 | 0.8622 |
Framework versions
- Transformers 4.24.0
- Pytorch 1.13.0+cu117
- Datasets 2.7.1
- Tokenizers 0.12.1