<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->
opus-mt-en-id-ccmatrix-lr-5
This model was trained from scratch on the ccmatrix dataset. It achieves the following results on the evaluation set:
- Loss: 0.6093
- Bleu: 65.4357
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 4000
- num_epochs: 25
Training results
Training Loss | Epoch | Step | Validation Loss | Bleu |
---|---|---|---|---|
0.678 | 1.0 | 28125 | 0.6238 | 63.4798 |
0.5765 | 2.0 | 56250 | 0.6036 | 64.1162 |
0.5375 | 3.0 | 84375 | 0.5953 | 64.4048 |
0.5098 | 4.0 | 112500 | 0.5887 | 64.7167 |
0.4879 | 5.0 | 140625 | 0.5862 | 64.8577 |
0.4696 | 6.0 | 168750 | 0.5855 | 64.9321 |
0.4539 | 7.0 | 196875 | 0.5835 | 64.9806 |
0.4401 | 8.0 | 225000 | 0.5875 | 65.1012 |
0.4279 | 9.0 | 253125 | 0.5864 | 65.1125 |
0.4168 | 10.0 | 281250 | 0.5870 | 65.1402 |
0.4069 | 11.0 | 309375 | 0.5905 | 65.2012 |
0.3977 | 12.0 | 337500 | 0.5905 | 65.3486 |
0.3895 | 13.0 | 365625 | 0.5944 | 65.3406 |
0.3817 | 14.0 | 393750 | 0.5957 | 65.3218 |
0.3749 | 15.0 | 421875 | 0.5978 | 65.3269 |
0.3683 | 16.0 | 450000 | 0.5989 | 65.355 |
0.3624 | 17.0 | 478125 | 0.6009 | 65.4288 |
0.3573 | 18.0 | 506250 | 0.6007 | 65.4001 |
0.3525 | 19.0 | 534375 | 0.6035 | 65.4446 |
0.3484 | 20.0 | 562500 | 0.6054 | 65.3843 |
0.3448 | 21.0 | 590625 | 0.6060 | 65.392 |
0.3415 | 22.0 | 618750 | 0.6078 | 65.4052 |
0.3388 | 23.0 | 646875 | 0.6082 | 65.3898 |
0.3365 | 24.0 | 675000 | 0.6089 | 65.4171 |
0.3349 | 25.0 | 703125 | 0.6093 | 65.4357 |
Framework versions
- Transformers 4.26.1
- Pytorch 2.0.0
- Datasets 2.10.1
- Tokenizers 0.11.0