<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. -->
skillsBERT_v3_epoch200
This model is a fine-tuned version of on an unknown dataset. It achieves the following results on the evaluation set:
- Train Loss: 0.0256
- Validation Loss: 7.8012
- Epoch: 199
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamW', 'weight_decay': 0.004, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': 5e-05, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}
- training_precision: float32
Training results
Train Loss | Validation Loss | Epoch |
---|---|---|
6.8416 | 6.7417 | 0 |
6.2162 | 6.1436 | 1 |
5.3514 | 5.3111 | 2 |
4.5931 | 4.9790 | 3 |
4.0664 | 4.8477 | 4 |
3.6654 | 4.6776 | 5 |
3.3343 | 4.5758 | 6 |
3.0431 | 4.4659 | 7 |
2.7726 | 4.4337 | 8 |
2.5106 | 4.6514 | 9 |
2.2625 | 4.6512 | 10 |
2.0222 | 4.7317 | 11 |
1.7924 | 4.6184 | 12 |
1.5719 | 4.7085 | 13 |
1.3735 | 4.8741 | 14 |
1.1820 | 5.0078 | 15 |
1.0164 | 5.0224 | 16 |
0.8588 | 5.2085 | 17 |
0.7247 | 5.2827 | 18 |
0.6140 | 5.3904 | 19 |
0.5144 | 5.3287 | 20 |
0.4330 | 5.4909 | 21 |
0.3603 | 5.6482 | 22 |
0.3120 | 5.4950 | 23 |
0.2634 | 5.8465 | 24 |
0.2322 | 5.8744 | 25 |
0.2077 | 5.8122 | 26 |
0.1904 | 5.9466 | 27 |
0.1698 | 6.0747 | 28 |
0.1536 | 6.2833 | 29 |
0.1462 | 6.2201 | 30 |
0.1367 | 6.3858 | 31 |
0.1309 | 6.4264 | 32 |
0.1196 | 6.3880 | 33 |
0.1129 | 6.6965 | 34 |
0.1100 | 6.4638 | 35 |
0.1050 | 6.4099 | 36 |
0.0994 | 6.4061 | 37 |
0.0973 | 6.4458 | 38 |
0.0934 | 6.5099 | 39 |
0.0909 | 6.4002 | 40 |
0.0896 | 6.5372 | 41 |
0.0839 | 6.5808 | 42 |
0.0817 | 6.4682 | 43 |
0.0814 | 6.6921 | 44 |
0.0793 | 6.7584 | 45 |
0.0765 | 6.7847 | 46 |
0.0765 | 6.8182 | 47 |
0.0712 | 6.7281 | 48 |
0.0710 | 6.7083 | 49 |
0.0700 | 6.6643 | 50 |
0.0695 | 6.7186 | 51 |
0.0681 | 6.9158 | 52 |
0.0647 | 6.8065 | 53 |
0.0662 | 7.0515 | 54 |
0.0630 | 6.9353 | 55 |
0.0624 | 7.0418 | 56 |
0.0640 | 6.7393 | 57 |
0.0610 | 7.0111 | 58 |
0.0602 | 7.0310 | 59 |
0.0577 | 6.7995 | 60 |
0.0616 | 6.7364 | 61 |
0.0575 | 7.0542 | 62 |
0.0532 | 7.1219 | 63 |
0.0601 | 6.9904 | 64 |
0.0528 | 7.2782 | 65 |
0.0551 | 7.2465 | 66 |
0.0551 | 7.2380 | 67 |
0.0542 | 6.9920 | 68 |
0.0536 | 7.1704 | 69 |
0.0529 | 7.1467 | 70 |
0.0488 | 7.0684 | 71 |
0.0494 | 7.0333 | 72 |
0.0518 | 7.3027 | 73 |
0.0505 | 7.1332 | 74 |
0.0481 | 7.0856 | 75 |
0.0493 | 7.2170 | 76 |
0.0490 | 7.3652 | 77 |
0.0480 | 7.3370 | 78 |
0.0485 | 7.1336 | 79 |
0.0480 | 7.2017 | 80 |
0.0483 | 7.2421 | 81 |
0.0463 | 7.3675 | 82 |
0.0455 | 7.3847 | 83 |
0.0441 | 7.3112 | 84 |
0.0454 | 7.2941 | 85 |
0.0474 | 7.4086 | 86 |
0.0451 | 7.1806 | 87 |
0.0417 | 7.4458 | 88 |
0.0464 | 7.2912 | 89 |
0.0422 | 7.6368 | 90 |
0.0434 | 7.4060 | 91 |
0.0427 | 7.4733 | 92 |
0.0433 | 7.4114 | 93 |
0.0416 | 7.3643 | 94 |
0.0428 | 7.5354 | 95 |
0.0426 | 7.2827 | 96 |
0.0400 | 7.4285 | 97 |
0.0413 | 7.4499 | 98 |
0.0422 | 7.4816 | 99 |
0.0407 | 7.3491 | 100 |
0.0402 | 7.3784 | 101 |
0.0412 | 7.3845 | 102 |
0.0389 | 7.5468 | 103 |
0.0372 | 7.4723 | 104 |
0.0421 | 7.4283 | 105 |
0.0382 | 7.4074 | 106 |
0.0392 | 7.4365 | 107 |
0.0399 | 7.4375 | 108 |
0.0396 | 7.5146 | 109 |
0.0389 | 7.2877 | 110 |
0.0384 | 7.3907 | 111 |
0.0386 | 7.5558 | 112 |
0.0378 | 7.3746 | 113 |
0.0359 | 7.5122 | 114 |
0.0412 | 7.4631 | 115 |
0.0341 | 7.5950 | 116 |
0.0380 | 7.3713 | 117 |
0.0382 | 7.4232 | 118 |
0.0350 | 7.5180 | 119 |
0.0374 | 7.4993 | 120 |
0.0373 | 7.4308 | 121 |
0.0357 | 7.4511 | 122 |
0.0364 | 7.5254 | 123 |
0.0349 | 7.4326 | 124 |
0.0371 | 7.5467 | 125 |
0.0344 | 7.5324 | 126 |
0.0375 | 7.4660 | 127 |
0.0365 | 7.5816 | 128 |
0.0348 | 7.5425 | 129 |
0.0333 | 7.5655 | 130 |
0.0331 | 7.6466 | 131 |
0.0369 | 7.6142 | 132 |
0.0332 | 7.7292 | 133 |
0.0349 | 7.6649 | 134 |
0.0343 | 7.5255 | 135 |
0.0335 | 7.7736 | 136 |
0.0334 | 7.6680 | 137 |
0.0356 | 7.4846 | 138 |
0.0323 | 7.7691 | 139 |
0.0339 | 7.6986 | 140 |
0.0333 | 7.4287 | 141 |
0.0333 | 7.5534 | 142 |
0.0322 | 7.5383 | 143 |
0.0333 | 7.5212 | 144 |
0.0320 | 7.5945 | 145 |
0.0335 | 7.5932 | 146 |
0.0332 | 7.7700 | 147 |
0.0323 | 7.4798 | 148 |
0.0318 | 7.5804 | 149 |
0.0336 | 7.5721 | 150 |
0.0332 | 7.3627 | 151 |
0.0334 | 7.6093 | 152 |
0.0293 | 7.7731 | 153 |
0.0336 | 7.6722 | 154 |
0.0319 | 7.5856 | 155 |
0.0325 | 7.6355 | 156 |
0.0287 | 7.5941 | 157 |
0.0318 | 7.6476 | 158 |
0.0304 | 7.5365 | 159 |
0.0313 | 7.6429 | 160 |
0.0319 | 7.5318 | 161 |
0.0311 | 7.7468 | 162 |
0.0321 | 7.6332 | 163 |
0.0301 | 7.8412 | 164 |
0.0292 | 7.6819 | 165 |
0.0313 | 7.5544 | 166 |
0.0311 | 7.6667 | 167 |
0.0274 | 7.7875 | 168 |
0.0317 | 7.6632 | 169 |
0.0305 | 7.8710 | 170 |
0.0311 | 7.5799 | 171 |
0.0311 | 7.7357 | 172 |
0.0271 | 7.7491 | 173 |
0.0317 | 7.8025 | 174 |
0.0294 | 7.6856 | 175 |
0.0302 | 7.7687 | 176 |
0.0293 | 7.8676 | 177 |
0.0315 | 7.6371 | 178 |
0.0286 | 7.8114 | 179 |
0.0288 | 7.6690 | 180 |
0.0304 | 7.6712 | 181 |
0.0293 | 7.8668 | 182 |
0.0305 | 7.8221 | 183 |
0.0284 | 7.7506 | 184 |
0.0309 | 7.6629 | 185 |
0.0282 | 7.7157 | 186 |
0.0262 | 7.8241 | 187 |
0.0305 | 7.6471 | 188 |
0.0288 | 7.6409 | 189 |
0.0283 | 7.7386 | 190 |
0.0286 | 7.8070 | 191 |
0.0284 | 7.7921 | 192 |
0.0287 | 7.9042 | 193 |
0.0289 | 7.7297 | 194 |
0.0276 | 7.8584 | 195 |
0.0278 | 7.8580 | 196 |
0.0258 | 7.9323 | 197 |
0.0306 | 7.7566 | 198 |
0.0256 | 7.8012 | 199 |
Framework versions
- Transformers 4.28.0.dev0
- TensorFlow 2.11.0
- Datasets 2.10.1
- Tokenizers 0.13.2