Efficient Conformer v2 for non-streaming ASR
Specification: https://github.com/wenet-e2e/wenet/pull/1636
Results
- Feature info:
- using fbank feature, cmvn, speed perturb, dither
- Training info:
- train_u2++_efficonformer_v2.yaml
- 8 gpu, batch size 16, acc_grad 1, 120 epochs
- lr 0.001, warmup_steps 35000
- Model info:
- Model Params: 50,341,278
- Downsample rate: 1/2 (conv2d2) * 1/4 (efficonformer block)
- encoder_dim 256, output_size 256, head 8, linear_units 2048
- num_blocks 12, cnn_module_kernel 15, group_size 3
- Decoding info:
- ctc_weight 0.5, reverse_weight 0.3, average_num 20
test clean
decoding mode | full | 18 | 16 |
---|---|---|---|
attention decoder | 3.49 | 3.71 | 3.72 |
ctc_greedy_search | 3.49 | 3.74 | 3.77 |
ctc prefix beam search | 3.47 | 3.72 | 3.74 |
attention rescoring | 3.12 | 3.38 | 3.36 |
test other
decoding mode | full | 18 | 16 |
---|---|---|---|
attention decoder | 8.15 | 9.05 | 9.03 |
ctc_greedy_search | 8.73 | 9.82 | 9.83 |
ctc prefix beam search | 8.70 | 9.81 | 9.79 |
attention rescoring | 8.05 | 9.08 | 9.10 |
Start to Use
Install WeNet follow: https://wenet.org.cn/wenet/install.html#install-for-training
Decode
cd examples/librispeech/s0
cp exp/wenet_efficient_conformer_librispeech_v2/decode.sh ./
cp exp/wenet_efficient_conformer_librispeech_v2/wer.sh ./
dir=exp/wenet_efficient_conformer_librispeech_v2
decoding_chunk_size=-1
. ./decode.sh ${dir} 20 ${decoding_chunk_size}
# WER
. ./wer.sh test_clean wenet_efficient_conformer_librispeech_v2 ${decoding_chunk_size}
. ./wer.sh test_other wenet_efficient_conformer_librispeech_v2 ${decoding_chunk_size}