question generation

Model Card of vocabtrimmer/mt5-small-trimmed-ko-10000-koquad-qg

This model is fine-tuned version of vocabtrimmer/mt5-small-trimmed-ko-10000 for question generation task on the lmqg/qg_koquad (dataset_name: default) via lmqg.

Overview

Usage

from lmqg import TransformersQG

# initialize model
model = TransformersQG(language="ko", model="vocabtrimmer/mt5-small-trimmed-ko-10000-koquad-qg")

# model prediction
questions = model.generate_q(list_context="1990년 영화 《 남부군 》에서 단역으로 영화배우 첫 데뷔에 이어 같은 해 KBS 드라마 《지구인》에서 단역으로 출연하였고 이듬해 MBC 《여명의 눈동자》를 통해 단역으로 출연하였다.", list_answer="남부군")

from transformers import pipeline

pipe = pipeline("text2text-generation", "vocabtrimmer/mt5-small-trimmed-ko-10000-koquad-qg")
output = pipe("1990년 영화 《 <hl> 남부군 <hl> 》에서 단역으로 영화배우 첫 데뷔에 이어 같은 해 KBS 드라마 《지구인》에서 단역으로 출연하였고 이듬해 MBC 《여명의 눈동자》를 통해 단역으로 출연하였다.")

Evaluation

Score Type Dataset
BERTScore 83.36 default lmqg/qg_koquad
Bleu_1 26.24 default lmqg/qg_koquad
Bleu_2 19.38 default lmqg/qg_koquad
Bleu_3 14.67 default lmqg/qg_koquad
Bleu_4 11.25 default lmqg/qg_koquad
METEOR 27.78 default lmqg/qg_koquad
MoverScore 82.72 default lmqg/qg_koquad
ROUGE_L 26.34 default lmqg/qg_koquad

Training hyperparameters

The following hyperparameters were used during fine-tuning:

The full configuration can be found at fine-tuning config file.

Citation

@inproceedings{ushio-etal-2022-generative,
    title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
    author = "Ushio, Asahi  and
        Alva-Manchego, Fernando  and
        Camacho-Collados, Jose",
    booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
    month = dec,
    year = "2022",
    address = "Abu Dhabi, U.A.E.",
    publisher = "Association for Computational Linguistics",
}