<div style="text-align:center;width:350px;height:350px;"> <img src="https://huggingface.co/hackathon-somos-nlp-2023/SalpiBloom-1b1/resolve/main/salpibloom.png" alt="SAlpaca logo""> </div>
SAlpiBloom: Spanish + Alpaca + Bloom (WIP)
Learning rate = 3e-4
Adapter Description
This adapter was created with the PEFT library and allowed the base model bigscience/bloom-1b1 to be fine-tuned on the Spanish Alpaca Dataset by using the method LoRA.
How to use
import torch
from peft import PeftModel, PeftConfig
from transformers import AutoModelForCausalLM, AutoTokenizer
peft_model_id = "hackathon-somos-nlp-2023/SalpiBloom_base_lr3e4_1b1"
config = PeftConfig.from_pretrained(peft_model_id)
model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path, return_dict=True, load_in_8bit=True, device_map='auto')
# tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)
tokenizer = AutoTokenizer.from_pretrained(peft_model_id)
# Load the Lora model
model = PeftModel.from_pretrained(model, peft_model_id)
def gen_conversation(text):
text = "<SC>instruction: " + text + "\n "
batch = tokenizer(text, return_tensors='pt')
with torch.cuda.amp.autocast():
output_tokens = model.generate(**batch, max_new_tokens=256, eos_token_id=50258, early_stopping = True, temperature=.9)
print('\n\n', tokenizer.decode(output_tokens[0], skip_special_tokens=False))
text = "Redacta un cuento corto"
gen_conversation(text)
Resources used
Google Colab machine with the following specifications <div style="text-align:center;width:550px;height:550px;"> <img src="https://huggingface.co/hackathon-somos-nlp-2023/bertin-gpt-j-6B-es-finetuned-salpaca/resolve/main/resource.jpeg" alt="Resource logo"> </div>
Citation
@misc {hackathon-somos-nlp-2023,
author = { {Edison Bejarano, Leonardo BolaƱos, Alberto Ceballos, Santiago Pineda, Nicolay Potes} },
title = { SalpiBloom_base_lr3e4_1b1 },
year = 2023,
url = { https://huggingface.co/hackathon-somos-nlp-2023/SalpiBloom_base_lr3e4_1b1 }
publisher = { Hugging Face }
}