Model description
This is a RandomForestClassifier
model trained on JeVeuxAider dataset. As input, the model takes text embeddings encoded with camembert-base (768 tokens)
Intended uses & limitations
This model is not ready to be used in production.
Training Procedure
Hyperparameters
The model is trained with below hyperparameters.
<details> <summary> Click to expand </summary>
Hyperparameter | Value |
---|---|
memory | |
steps | [('scaler', StandardScaler()), ('pca', PCA(n_components=374)), ('rfc', RandomForestClassifier(class_weight='balanced', random_state=42))] |
verbose | False |
scaler | StandardScaler() |
pca | PCA(n_components=374) |
rfc | RandomForestClassifier(class_weight='balanced', random_state=42) |
scaler__copy | True |
scaler__with_mean | True |
scaler__with_std | True |
pca__copy | True |
pca__iterated_power | auto |
pca__n_components | 374 |
pca__n_oversamples | 10 |
pca__power_iteration_normalizer | auto |
pca__random_state | |
pca__svd_solver | auto |
pca__tol | 0.0 |
pca__whiten | False |
rfc__bootstrap | True |
rfc__ccp_alpha | 0.0 |
rfc__class_weight | balanced |
rfc__criterion | gini |
rfc__max_depth | |
rfc__max_features | sqrt |
rfc__max_leaf_nodes | |
rfc__max_samples | |
rfc__min_impurity_decrease | 0.0 |
rfc__min_samples_leaf | 1 |
rfc__min_samples_split | 2 |
rfc__min_weight_fraction_leaf | 0.0 |
rfc__n_estimators | 100 |
rfc__n_jobs | |
rfc__oob_score | False |
rfc__random_state | 42 |
rfc__verbose | 0 |
rfc__warm_start | False |
</details>
Model Plot
The model plot is below.
<style>#sk-container-id-2 {color: black;background-color: white;}#sk-container-id-2 pre{padding: 0;}#sk-container-id-2 div.sk-toggleable {background-color: white;}#sk-container-id-2 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-container-id-2 label.sk-toggleable__label-arrow:before {content: "▸";float: left;margin-right: 0.25em;color: #696969;}#sk-container-id-2 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-container-id-2 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-container-id-2 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-container-id-2 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-container-id-2 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-container-id-2 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";}#sk-container-id-2 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-2 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-2 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-container-id-2 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-container-id-2 div.sk-estimator:hover {background-color: #d4ebff;}#sk-container-id-2 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-container-id-2 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-2 div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: 0;}#sk-container-id-2 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;position: relative;}#sk-container-id-2 div.sk-item {position: relative;z-index: 1;}#sk-container-id-2 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;position: relative;}#sk-container-id-2 div.sk-item::before, #sk-container-id-2 div.sk-parallel-item::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: -1;}#sk-container-id-2 div.sk-parallel-item {display: flex;flex-direction: column;z-index: 1;position: relative;background-color: white;}#sk-container-id-2 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-container-id-2 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-container-id-2 div.sk-parallel-item:only-child::after {width: 0;}#sk-container-id-2 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;}#sk-container-id-2 div.sk-label label {font-family: monospace;font-weight: bold;display: inline-block;line-height: 1.2em;}#sk-container-id-2 div.sk-label-container {text-align: center;}#sk-container-id-2 div.sk-container {/* jupyter's normalize.less
sets [hidden] { display: none; }
but bootstrap.min.css set [hidden] { display: none !important; }
so we also need the !important
here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-container-id-2 div.sk-text-repr-fallback {display: none;}</style><div id="sk-container-id-2" class="sk-top-container" style="overflow: auto;"><div class="sk-text-repr-fallback"><pre>Pipeline(steps=[('scaler', StandardScaler()), ('pca', PCA(n_components=374)),('rfc',RandomForestClassifier(class_weight='balanced',random_state=42))])</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class="sk-container" hidden><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-5" type="checkbox" ><label for="sk-estimator-id-5" class="sk-toggleable__label sk-toggleable__label-arrow">Pipeline</label><div class="sk-toggleable__content"><pre>Pipeline(steps=[('scaler', StandardScaler()), ('pca', PCA(n_components=374)),('rfc',RandomForestClassifier(class_weight='balanced',random_state=42))])</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-6" type="checkbox" ><label for="sk-estimator-id-6" class="sk-toggleable__label sk-toggleable__label-arrow">StandardScaler</label><div class="sk-toggleable__content"><pre>StandardScaler()</pre></div></div></div><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-7" type="checkbox" ><label for="sk-estimator-id-7" class="sk-toggleable__label sk-toggleable__label-arrow">PCA</label><div class="sk-toggleable__content"><pre>PCA(n_components=374)</pre></div></div></div><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-8" type="checkbox" ><label for="sk-estimator-id-8" class="sk-toggleable__label sk-toggleable__label-arrow">RandomForestClassifier</label><div class="sk-toggleable__content"><pre>RandomForestClassifier(class_weight='balanced', random_state=42)</pre></div></div></div></div></div></div></div>
Evaluation Results
You can find the details about evaluation process and the evaluation results.
Metric | Value |
---|---|
accuracy | 0.962669 |
f1 score | 0.945696 |
Confusion Matrix
How to Get Started with the Model
[More Information Needed]
Model Card Authors
huynhdoo
Model Card Contact
You can contact the model card authors through following channels: [More Information Needed]
Citation
BibTeX
@inproceedings{...,year={2023}}
get_started_code
import pickle as pickle with open(pkl_filename, 'rb') as file: pipe = pickle.load(file)