generated_from_trainer

<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->

Variome_0.0001_0404_ES6

This model is a fine-tuned version of microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext on the None dataset. It achieves the following results on the evaluation set:

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.4714 0.13 25 0.1791 0.0 0.0 0.0 0.9759
0.1531 0.26 50 0.1271 0.0 0.0 0.0 0.9759
0.1288 0.39 75 0.1253 0.2032 0.0864 0.1212 0.9770
0.1253 0.52 100 0.1143 0.425 0.0163 0.0314 0.9762
0.101 0.65 125 0.1124 0.3438 0.1574 0.2159 0.9780
0.1062 0.79 150 0.1014 0.3569 0.2860 0.3175 0.9793
0.092 0.92 175 0.0986 0.4274 0.3081 0.3581 0.9805
0.0702 1.05 200 0.0942 0.5349 0.3234 0.4031 0.9810
0.0881 1.18 225 0.1009 0.3379 0.3580 0.3476 0.9765
0.0866 1.31 250 0.0780 0.5453 0.4155 0.4717 0.9830
0.0751 1.44 275 0.0749 0.5157 0.5038 0.5097 0.9830
0.0679 1.57 300 0.0732 0.5401 0.5432 0.5416 0.9835
0.0625 1.7 325 0.0728 0.6411 0.4491 0.5282 0.9842
0.065 1.83 350 0.0737 0.6115 0.4683 0.5304 0.9839
0.051 1.96 375 0.0720 0.5928 0.5240 0.5563 0.9840
0.0503 2.09 400 0.0669 0.6124 0.5489 0.5789 0.9854
0.0464 2.23 425 0.0718 0.625 0.5278 0.5723 0.9847
0.0528 2.36 450 0.0763 0.6628 0.4395 0.5286 0.9838
0.0473 2.49 475 0.0706 0.6109 0.5393 0.5729 0.9848
0.0542 2.62 500 0.0657 0.6159 0.5432 0.5773 0.9845
0.0508 2.75 525 0.0686 0.6515 0.5653 0.6053 0.9848
0.0476 2.88 550 0.0631 0.6857 0.5528 0.6121 0.9860
0.049 3.01 575 0.0689 0.6008 0.5720 0.5860 0.9842
0.0378 3.14 600 0.0720 0.6674 0.5605 0.6093 0.9854
0.0417 3.27 625 0.0695 0.6248 0.6104 0.6175 0.9852
0.0306 3.4 650 0.0723 0.6780 0.5537 0.6096 0.9860
0.0341 3.53 675 0.0664 0.6651 0.5547 0.6049 0.9862
0.0392 3.66 700 0.0656 0.6474 0.5691 0.6057 0.9854

Framework versions