Model Card of vocabtrimmer/mbart-large-cc25-trimmed-es-esquad-qg
This model is fine-tuned version of ckpts/'mbart-large-cc25'-trimmed-es for question generation task on the lmqg/qg_esquad (dataset_name: default) via lmqg
.
Overview
- Language model: ckpts/'mbart-large-cc25'-trimmed-es
- Language: es
- Training data: lmqg/qg_esquad (default)
- Online Demo: https://autoqg.net/
- Repository: https://github.com/asahi417/lm-question-generation
- Paper: https://arxiv.org/abs/2210.03992
Usage
- With
lmqg
from lmqg import TransformersQG
# initialize model
model = TransformersQG(language="es", model="vocabtrimmer/mbart-large-cc25-trimmed-es-esquad-qg")
# model prediction
questions = model.generate_q(list_context="a noviembre , que es también la estación lluviosa.", list_answer="noviembre")
- With
transformers
from transformers import pipeline
pipe = pipeline("text2text-generation", "vocabtrimmer/mbart-large-cc25-trimmed-es-esquad-qg")
output = pipe("del <hl> Ministerio de Desarrollo Urbano <hl> , Gobierno de la India.")
Evaluation
- Metric (Question Generation): raw metric file
Score | Type | Dataset | |
---|---|---|---|
BERTScore | 84.04 | default | lmqg/qg_esquad |
Bleu_1 | 25.81 | default | lmqg/qg_esquad |
Bleu_2 | 17.51 | default | lmqg/qg_esquad |
Bleu_3 | 12.67 | default | lmqg/qg_esquad |
Bleu_4 | 9.47 | default | lmqg/qg_esquad |
METEOR | 22.78 | default | lmqg/qg_esquad |
MoverScore | 59.29 | default | lmqg/qg_esquad |
ROUGE_L | 24.48 | default | lmqg/qg_esquad |
Training hyperparameters
The following hyperparameters were used during fine-tuning:
- dataset_path: lmqg/qg_esquad
- dataset_name: default
- input_types: paragraph_answer
- output_types: question
- prefix_types: None
- model: ckpts/'mbart-large-cc25'-trimmed-es
- max_length: 512
- max_length_output: 32
- epoch: 7
- batch: 8
- lr: 0.0001
- fp16: False
- random_seed: 1
- gradient_accumulation_steps: 8
- label_smoothing: 0.15
The full configuration can be found at fine-tuning config file.
Citation
@inproceedings{ushio-etal-2022-generative,
title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
author = "Ushio, Asahi and
Alva-Manchego, Fernando and
Camacho-Collados, Jose",
booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
month = dec,
year = "2022",
address = "Abu Dhabi, U.A.E.",
publisher = "Association for Computational Linguistics",
}