<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. -->
skillsBERT_v2_tf_epoch200
This model is a fine-tuned version of on an unknown dataset. It achieves the following results on the evaluation set:
- Train Loss: 0.0276
- Validation Loss: 8.4065
- Epoch: 199
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamW', 'weight_decay': 0.004, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': 5e-05, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}
- training_precision: float32
Training results
Train Loss | Validation Loss | Epoch |
---|---|---|
6.9368 | 6.9678 | 0 |
6.1821 | 6.1973 | 1 |
5.2896 | 5.5216 | 2 |
4.6036 | 5.0930 | 3 |
4.1260 | 4.9491 | 4 |
3.7779 | 4.7258 | 5 |
3.4894 | 4.7463 | 6 |
3.2243 | 4.6753 | 7 |
2.9684 | 4.7601 | 8 |
2.7213 | 4.7217 | 9 |
2.4751 | 4.7763 | 10 |
2.2359 | 4.9020 | 11 |
1.9973 | 4.9020 | 12 |
1.7702 | 5.1024 | 13 |
1.5533 | 5.0703 | 14 |
1.3533 | 5.2204 | 15 |
1.1692 | 5.3927 | 16 |
1.0013 | 5.3786 | 17 |
0.8445 | 5.5459 | 18 |
0.7170 | 5.5764 | 19 |
0.5973 | 5.6444 | 20 |
0.5046 | 5.8587 | 21 |
0.4235 | 5.8703 | 22 |
0.3569 | 5.8058 | 23 |
0.3052 | 6.1211 | 24 |
0.2655 | 5.9994 | 25 |
0.2298 | 6.4393 | 26 |
0.2044 | 6.3036 | 27 |
0.1878 | 6.3250 | 28 |
0.1713 | 6.3984 | 29 |
0.1566 | 6.3334 | 30 |
0.1463 | 6.6641 | 31 |
0.1359 | 6.5607 | 32 |
0.1298 | 6.8457 | 33 |
0.1216 | 6.5984 | 34 |
0.1176 | 6.6329 | 35 |
0.1112 | 7.0239 | 36 |
0.1071 | 6.6365 | 37 |
0.1010 | 6.7788 | 38 |
0.0976 | 6.9059 | 39 |
0.0971 | 7.0272 | 40 |
0.0954 | 6.9061 | 41 |
0.0907 | 6.7402 | 42 |
0.0849 | 6.8301 | 43 |
0.0826 | 7.0355 | 44 |
0.0858 | 6.9938 | 45 |
0.0809 | 7.0757 | 46 |
0.0783 | 7.1545 | 47 |
0.0744 | 7.3133 | 48 |
0.0716 | 7.2899 | 49 |
0.0750 | 7.4284 | 50 |
0.0722 | 7.3191 | 51 |
0.0723 | 7.2923 | 52 |
0.0666 | 7.3033 | 53 |
0.0710 | 7.2679 | 54 |
0.0650 | 7.2664 | 55 |
0.0661 | 7.1938 | 56 |
0.0640 | 7.1925 | 57 |
0.0641 | 7.4666 | 58 |
0.0602 | 7.3531 | 59 |
0.0625 | 7.2725 | 60 |
0.0627 | 7.4885 | 61 |
0.0620 | 7.3922 | 62 |
0.0552 | 7.4525 | 63 |
0.0594 | 7.2247 | 64 |
0.0581 | 7.3419 | 65 |
0.0548 | 7.4633 | 66 |
0.0583 | 7.5051 | 67 |
0.0543 | 7.3567 | 68 |
0.0545 | 7.4085 | 69 |
0.0539 | 7.5690 | 70 |
0.0546 | 7.3862 | 71 |
0.0511 | 7.7210 | 72 |
0.0530 | 7.5558 | 73 |
0.0516 | 7.8195 | 74 |
0.0501 | 7.5061 | 75 |
0.0521 | 7.5066 | 76 |
0.0499 | 7.6577 | 77 |
0.0501 | 7.5698 | 78 |
0.0497 | 7.5531 | 79 |
0.0480 | 7.3663 | 80 |
0.0482 | 7.5768 | 81 |
0.0487 | 7.5996 | 82 |
0.0487 | 7.3785 | 83 |
0.0472 | 7.6577 | 84 |
0.0457 | 7.5219 | 85 |
0.0465 | 7.6445 | 86 |
0.0465 | 7.4914 | 87 |
0.0466 | 7.7647 | 88 |
0.0451 | 7.6801 | 89 |
0.0443 | 7.7295 | 90 |
0.0461 | 7.7421 | 91 |
0.0454 | 7.7623 | 92 |
0.0442 | 7.6821 | 93 |
0.0430 | 7.9835 | 94 |
0.0449 | 7.6681 | 95 |
0.0430 | 7.8815 | 96 |
0.0424 | 7.9022 | 97 |
0.0445 | 7.8707 | 98 |
0.0431 | 7.7530 | 99 |
0.0421 | 7.7138 | 100 |
0.0414 | 7.7932 | 101 |
0.0425 | 7.5632 | 102 |
0.0379 | 7.8132 | 103 |
0.0433 | 7.6901 | 104 |
0.0386 | 7.8083 | 105 |
0.0426 | 7.7248 | 106 |
0.0410 | 7.8584 | 107 |
0.0418 | 7.7491 | 108 |
0.0401 | 7.8016 | 109 |
0.0421 | 7.7656 | 110 |
0.0389 | 7.8427 | 111 |
0.0389 | 7.7864 | 112 |
0.0396 | 7.8669 | 113 |
0.0396 | 7.7623 | 114 |
0.0379 | 7.8776 | 115 |
0.0392 | 7.9052 | 116 |
0.0390 | 7.8197 | 117 |
0.0406 | 7.8233 | 118 |
0.0371 | 7.8755 | 119 |
0.0395 | 7.9325 | 120 |
0.0369 | 8.0833 | 121 |
0.0373 | 7.9204 | 122 |
0.0372 | 8.0792 | 123 |
0.0391 | 7.7565 | 124 |
0.0347 | 7.8271 | 125 |
0.0373 | 7.9994 | 126 |
0.0365 | 8.0182 | 127 |
0.0362 | 8.1003 | 128 |
0.0371 | 8.0342 | 129 |
0.0362 | 8.1524 | 130 |
0.0374 | 8.0588 | 131 |
0.0355 | 7.9384 | 132 |
0.0349 | 8.0925 | 133 |
0.0358 | 8.1963 | 134 |
0.0367 | 7.9769 | 135 |
0.0347 | 7.8656 | 136 |
0.0349 | 8.0004 | 137 |
0.0339 | 7.9382 | 138 |
0.0371 | 8.1195 | 139 |
0.0360 | 7.9568 | 140 |
0.0308 | 8.0514 | 141 |
0.0370 | 7.8408 | 142 |
0.0344 | 7.9932 | 143 |
0.0328 | 8.0507 | 144 |
0.0323 | 8.1716 | 145 |
0.0347 | 7.9123 | 146 |
0.0330 | 8.0947 | 147 |
0.0347 | 7.9371 | 148 |
0.0357 | 8.1293 | 149 |
0.0318 | 8.1566 | 150 |
0.0352 | 8.1061 | 151 |
0.0320 | 8.4313 | 152 |
0.0339 | 8.0567 | 153 |
0.0318 | 8.1668 | 154 |
0.0352 | 7.8946 | 155 |
0.0327 | 8.0129 | 156 |
0.0336 | 8.2448 | 157 |
0.0328 | 7.9567 | 158 |
0.0339 | 7.9868 | 159 |
0.0320 | 7.9006 | 160 |
0.0321 | 8.3043 | 161 |
0.0324 | 8.0456 | 162 |
0.0327 | 8.0358 | 163 |
0.0304 | 8.1395 | 164 |
0.0315 | 8.1250 | 165 |
0.0338 | 8.1198 | 166 |
0.0345 | 8.0466 | 167 |
0.0304 | 8.0713 | 168 |
0.0277 | 8.0176 | 169 |
0.0334 | 8.2149 | 170 |
0.0292 | 8.2865 | 171 |
0.0315 | 8.1717 | 172 |
0.0313 | 8.3362 | 173 |
0.0324 | 8.1874 | 174 |
0.0312 | 8.1653 | 175 |
0.0319 | 8.1341 | 176 |
0.0297 | 8.1978 | 177 |
0.0321 | 8.1678 | 178 |
0.0326 | 8.2196 | 179 |
0.0294 | 8.1050 | 180 |
0.0300 | 8.0882 | 181 |
0.0305 | 8.2307 | 182 |
0.0304 | 8.2959 | 183 |
0.0300 | 8.2581 | 184 |
0.0288 | 8.1481 | 185 |
0.0305 | 8.2346 | 186 |
0.0306 | 8.1175 | 187 |
0.0311 | 8.2394 | 188 |
0.0298 | 8.1912 | 189 |
0.0277 | 8.2177 | 190 |
0.0315 | 8.1094 | 191 |
0.0305 | 8.1813 | 192 |
0.0283 | 8.3636 | 193 |
0.0307 | 8.3034 | 194 |
0.0280 | 8.3165 | 195 |
0.0309 | 8.3315 | 196 |
0.0275 | 8.3439 | 197 |
0.0314 | 8.3021 | 198 |
0.0276 | 8.4065 | 199 |
Framework versions
- Transformers 4.28.0.dev0
- TensorFlow 2.12.0
- Datasets 2.11.0
- Tokenizers 0.13.2