led-large-book-summary: continued
Fine-tuned further to explore if any improvements vs. the default.
Details
This model is a version of pszemraj/led-large-book-summary further fine-tuned for two epochs.
Usage
It's recommended to use this model with beam search decoding. If interested, you can also use the textsum
util repo to have most of this abstracted out for you:
pip install -U textsum
from textsum.summarize import Summarizer
model_name = "pszemraj/led-large-book-summary-continued"
summarizer = Summarizer(model_name) # GPU auto-detected
text = "put the text you don't want to read here"
summary = summarizer.summarize_string(text)
print(summary)
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 4
- eval_batch_size: 2
- seed: 8191
- gradient_accumulation_steps: 16
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.01
- num_epochs: 2.0
- mixed_precision_training: Native AMP