<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. -->
What does model do and how to use it
Just provide an title to the model and it will generate a whole article about it.
# Install transformers library
!pip install transformers
# Load tokenizer and model
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, TFAutoModelForSeq2SeqLM
model_name = "Seungjun/articleGeneratorV1.0"
tokenizer = AutoTokenizer.from_pretrained("t5-small")
model = TFAutoModelForSeq2SeqLM.from_pretrained(model_name)
# Get the article for a given title
from transformers import pipeline
summarizer = pipeline("summarization", model=model, tokenizer=tokenizer, framework="tf")
summarizer(
"Steve Jobs", # title
min_length=500,
max_length=1024,
)
Result:
Current limitation of the model
It generate aot of lies. 99% of the word generated by this model is not true.
articleGeneratorV1.0
This model is a fine-tuned version of t5-small on an unknown dataset. It achieves the following results on the evaluation set:
- Train Loss: 3.9568
- Validation Loss: 3.6096
- Train Rougel: tf.Tensor(0.08172019, shape=(), dtype=float32)
- Epoch: 4
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': 2e-05, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}
- training_precision: float32
Training results
Train Loss | Validation Loss | Train Rougel | Epoch |
---|---|---|---|
4.9218 | 4.0315 | tf.Tensor(0.08038119, shape=(), dtype=float32) | 0 |
4.2887 | 3.8366 | tf.Tensor(0.08103053, shape=(), dtype=float32) | 1 |
4.1269 | 3.7328 | tf.Tensor(0.081041485, shape=(), dtype=float32) | 2 |
4.0276 | 3.6614 | tf.Tensor(0.081364945, shape=(), dtype=float32) | 3 |
3.9568 | 3.6096 | tf.Tensor(0.08172019, shape=(), dtype=float32) | 4 |
Framework versions
- Transformers 4.27.4
- TensorFlow 2.12.0
- Datasets 2.11.0
- Tokenizers 0.13.3