<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. -->
Regression_bert_1500
This model is a fine-tuned version of albert-base-v2 on an unknown dataset. It achieves the following results on the evaluation set:
- Train Loss: 0.3665
- Train Mae: 0.5651
- Train Mse: 0.4539
- Train R2-score: 0.5632
- Validation Loss: 0.3640
- Validation Mae: 0.6123
- Validation Mse: 0.4470
- Validation R2-score: 0.5765
- Epoch: 22
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': 1e-04, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}
- training_precision: float32
Training results
Train Loss | Train Mae | Train Mse | Train R2-score | Validation Loss | Validation Mae | Validation Mse | Validation R2-score | Epoch |
---|---|---|---|---|---|---|---|---|
0.3911 | 0.5811 | 0.4875 | 0.5636 | 0.3808 | 0.6393 | 0.4778 | 0.4775 | 0 |
0.3669 | 0.5644 | 0.4527 | 0.6196 | 0.3524 | 0.5673 | 0.4286 | 0.6944 | 1 |
0.3652 | 0.5606 | 0.4457 | 0.6645 | 0.3711 | 0.6253 | 0.4600 | 0.5315 | 2 |
0.3669 | 0.5642 | 0.4490 | 0.5194 | 0.3525 | 0.5695 | 0.4286 | 0.6901 | 3 |
0.3693 | 0.5693 | 0.4580 | 0.6646 | 0.3558 | 0.5904 | 0.4329 | 0.6414 | 4 |
0.3682 | 0.5633 | 0.4540 | 0.7464 | 0.3602 | 0.5255 | 0.4485 | 0.7509 | 5 |
0.3712 | 0.5632 | 0.4527 | 0.6645 | 0.3650 | 0.6145 | 0.4489 | 0.5693 | 6 |
0.3781 | 0.5720 | 0.4661 | 0.5801 | 0.3545 | 0.5849 | 0.4309 | 0.6553 | 7 |
0.3659 | 0.5673 | 0.4564 | 0.1693 | 0.3723 | 0.6271 | 0.4621 | 0.5247 | 8 |
0.3693 | 0.5642 | 0.4487 | 0.7048 | 0.3524 | 0.5641 | 0.4289 | 0.7006 | 9 |
0.3656 | 0.5655 | 0.4495 | 0.6565 | 0.3575 | 0.5328 | 0.4425 | 0.7448 | 10 |
0.3685 | 0.5632 | 0.4540 | 0.7202 | 0.3551 | 0.5878 | 0.4319 | 0.6482 | 11 |
0.3702 | 0.5646 | 0.4543 | 0.7295 | 0.3528 | 0.5557 | 0.4306 | 0.7152 | 12 |
0.3661 | 0.5615 | 0.4450 | 0.6631 | 0.3683 | 0.5240 | 0.4664 | 0.7592 | 13 |
0.3835 | 0.5742 | 0.4757 | 0.7335 | 0.3531 | 0.5523 | 0.4316 | 0.7206 | 14 |
0.3641 | 0.5628 | 0.4472 | 0.7325 | 0.3559 | 0.5909 | 0.4331 | 0.6399 | 15 |
0.3764 | 0.5633 | 0.4566 | 0.7291 | 0.3549 | 0.5867 | 0.4315 | 0.6508 | 16 |
0.3625 | 0.5594 | 0.4443 | 0.5555 | 0.3648 | 0.6141 | 0.4486 | 0.5707 | 17 |
0.3816 | 0.5743 | 0.4693 | 0.6649 | 0.3559 | 0.5385 | 0.4385 | 0.7389 | 18 |
0.3721 | 0.5721 | 0.4618 | 0.6791 | 0.3529 | 0.5745 | 0.4288 | 0.6795 | 19 |
0.3711 | 0.5659 | 0.4586 | 0.2709 | 0.3610 | 0.5234 | 0.4505 | 0.7525 | 20 |
0.3693 | 0.5641 | 0.4501 | 0.7400 | 0.3525 | 0.5607 | 0.4294 | 0.7068 | 21 |
0.3665 | 0.5651 | 0.4539 | 0.5632 | 0.3640 | 0.6123 | 0.4470 | 0.5765 | 22 |
Framework versions
- Transformers 4.27.4
- TensorFlow 2.12.0
- Datasets 2.11.0
- Tokenizers 0.13.3