<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. -->
pegasus_samsum
This model is a fine-tuned version of google/pegasus-large on an unknown dataset. It achieves the following results on the evaluation set:
- Train Loss: 0.3415
- Train Sparse Categorical Accuracy: 0.9115
- Validation Loss: 0.5093
- Validation Sparse Categorical Accuracy: 0.8909
- Epoch: 2
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': 0.001, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}
- training_precision: float32
Training results
Train Loss | Train Sparse Categorical Accuracy | Validation Loss | Validation Sparse Categorical Accuracy | Epoch |
---|---|---|---|---|
0.5728 | 0.8809 | 0.4938 | 0.8892 | 0 |
0.4161 | 0.8996 | 0.4876 | 0.8923 | 1 |
0.3415 | 0.9115 | 0.5093 | 0.8909 | 2 |
Framework versions
- Transformers 4.27.4
- TensorFlow 2.12.0
- Datasets 2.11.0
- Tokenizers 0.13.3