<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->
roberta-base-finetuned-ner
This model is a fine-tuned version of roberta-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0381
- Precision: 0.9469
- Recall: 0.9530
- F1: 0.9500
- Accuracy: 0.9915
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.1328 | 1.0 | 753 | 0.0492 | 0.9143 | 0.9308 | 0.9225 | 0.9884 |
0.0301 | 2.0 | 1506 | 0.0378 | 0.9421 | 0.9474 | 0.9448 | 0.9910 |
0.0185 | 3.0 | 2259 | 0.0381 | 0.9469 | 0.9530 | 0.9500 | 0.9915 |
Framework versions
- Transformers 4.9.2
- Pytorch 1.9.0+cu102
- Datasets 1.11.0
- Tokenizers 0.10.3