<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. -->
DistibertNER
This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Train Loss: 0.0368
 - Validation Loss: 0.0173
 - Train Precision: 0.9941
 - Train Recall: 0.9971
 - Train F1: 0.9956
 - Train Accuracy: 0.9972
 - Epoch: 9
 
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5e-05, 'decay_steps': 9, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 1e-08}
 - training_precision: float32
 
Training results
| Train Loss | Validation Loss | Train Precision | Train Recall | Train F1 | Train Accuracy | Epoch | 
|---|---|---|---|---|---|---|
| 0.0700 | 0.0422 | 0.9941 | 0.9912 | 0.9926 | 0.9945 | 0 | 
| 0.0860 | 0.0423 | 0.9971 | 0.9941 | 0.9956 | 0.9972 | 1 | 
| 0.0694 | 0.0354 | 0.9971 | 0.9941 | 0.9956 | 0.9972 | 2 | 
| 0.0615 | 0.0287 | 0.9941 | 0.9912 | 0.9926 | 0.9945 | 3 | 
| 0.0462 | 0.0244 | 0.9941 | 0.9912 | 0.9926 | 0.9945 | 4 | 
| 0.0462 | 0.0208 | 0.9941 | 0.9971 | 0.9956 | 0.9972 | 5 | 
| 0.0497 | 0.0188 | 0.9941 | 0.9971 | 0.9956 | 0.9972 | 6 | 
| 0.0339 | 0.0178 | 0.9941 | 0.9971 | 0.9956 | 0.9972 | 7 | 
| 0.0386 | 0.0173 | 0.9941 | 0.9971 | 0.9956 | 0.9972 | 8 | 
| 0.0368 | 0.0173 | 0.9941 | 0.9971 | 0.9956 | 0.9972 | 9 | 
Framework versions
- Transformers 4.27.4
 - TensorFlow 2.12.0
 - Datasets 2.11.0
 - Tokenizers 0.13.3