<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->
byt5-base-es_hch
This model is a fine-tuned version of google/byt5-base on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.0999
- Bleu: 8.9448
- Gen Len: 96.522
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 65
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 100.0
Training results
Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len |
---|---|---|---|---|---|
No log | 1.0 | 398 | 1.1655 | 0.1048 | 19.0 |
1.5993 | 2.0 | 796 | 1.0294 | 0.0762 | 19.0 |
1.1714 | 3.0 | 1194 | 0.9575 | 0.0863 | 19.0 |
1.0539 | 4.0 | 1592 | 0.9043 | 0.0769 | 19.0 |
1.0539 | 5.0 | 1990 | 0.8519 | 0.0792 | 19.0 |
0.9762 | 6.0 | 2388 | 0.8147 | 0.0563 | 19.0 |
0.9072 | 7.0 | 2786 | 0.7833 | 0.0856 | 19.0 |
0.8502 | 8.0 | 3184 | 0.7526 | 0.091 | 19.0 |
0.8081 | 9.0 | 3582 | 0.7389 | 0.1344 | 19.0 |
0.8081 | 10.0 | 3980 | 0.7187 | 0.1271 | 19.0 |
0.7683 | 11.0 | 4378 | 0.7038 | 0.1299 | 19.0 |
0.7318 | 12.0 | 4776 | 0.6901 | 0.1213 | 19.0 |
0.6998 | 13.0 | 5174 | 0.6753 | 0.1583 | 19.0 |
0.6683 | 14.0 | 5572 | 0.6631 | 0.145 | 19.0 |
0.6683 | 15.0 | 5970 | 0.6530 | 0.1516 | 19.0 |
0.6406 | 16.0 | 6368 | 0.6454 | 0.1599 | 19.0 |
0.6128 | 17.0 | 6766 | 0.6383 | 0.1478 | 19.0 |
0.5911 | 18.0 | 7164 | 0.6369 | 0.1571 | 19.0 |
0.5721 | 19.0 | 7562 | 0.6339 | 0.1668 | 19.0 |
0.5721 | 20.0 | 7960 | 0.6295 | 0.1611 | 19.0 |
0.547 | 21.0 | 8358 | 0.6267 | 0.1722 | 19.0 |
0.529 | 22.0 | 8756 | 0.6275 | 0.1656 | 19.0 |
0.5115 | 23.0 | 9154 | 0.6285 | 0.1684 | 19.0 |
0.4934 | 24.0 | 9552 | 0.6269 | 0.1696 | 19.0 |
0.4934 | 25.0 | 9950 | 0.6358 | 0.182 | 19.0 |
0.4773 | 26.0 | 10348 | 0.6338 | 0.1699 | 19.0 |
0.4591 | 27.0 | 10746 | 0.6358 | 0.1855 | 19.0 |
0.4449 | 28.0 | 11144 | 0.6440 | 0.1759 | 19.0 |
0.4285 | 29.0 | 11542 | 0.6438 | 0.1786 | 19.0 |
0.4285 | 30.0 | 11940 | 0.6474 | 0.1874 | 19.0 |
0.4137 | 31.0 | 12338 | 0.6517 | 0.1968 | 19.0 |
0.4012 | 32.0 | 12736 | 0.6562 | 0.1735 | 19.0 |
0.3858 | 33.0 | 13134 | 0.6581 | 0.18 | 19.0 |
0.3753 | 34.0 | 13532 | 0.6714 | 0.1837 | 19.0 |
0.3753 | 35.0 | 13930 | 0.6750 | 0.177 | 19.0 |
0.3613 | 36.0 | 14328 | 0.6773 | 0.177 | 19.0 |
0.3493 | 37.0 | 14726 | 0.6915 | 0.1859 | 19.0 |
0.339 | 38.0 | 15124 | 0.7032 | 0.1756 | 19.0 |
0.3263 | 39.0 | 15522 | 0.7003 | 0.1844 | 19.0 |
0.3263 | 40.0 | 15920 | 0.7169 | 0.1795 | 19.0 |
0.3153 | 41.0 | 16318 | 0.7181 | 0.1903 | 19.0 |
0.3047 | 42.0 | 16716 | 0.7283 | 0.1864 | 19.0 |
0.2933 | 43.0 | 17114 | 0.7462 | 0.188 | 19.0 |
0.2888 | 44.0 | 17512 | 0.7420 | 0.1841 | 19.0 |
0.2888 | 45.0 | 17910 | 0.7574 | 0.1748 | 19.0 |
0.2762 | 46.0 | 18308 | 0.7617 | 0.1747 | 19.0 |
0.2671 | 47.0 | 18706 | 0.7678 | 0.1743 | 19.0 |
0.2585 | 48.0 | 19104 | 0.7697 | 0.1902 | 19.0 |
0.252 | 49.0 | 19502 | 0.7865 | 0.208 | 19.0 |
0.252 | 50.0 | 19900 | 0.8059 | 0.1777 | 19.0 |
0.2411 | 51.0 | 20298 | 0.7906 | 0.212 | 19.0 |
0.2358 | 52.0 | 20696 | 0.8143 | 0.1778 | 19.0 |
0.2273 | 53.0 | 21094 | 0.8184 | 0.218 | 19.0 |
0.2273 | 54.0 | 21492 | 0.8261 | 0.2243 | 19.0 |
0.223 | 55.0 | 21890 | 0.8429 | 0.2196 | 19.0 |
0.2131 | 56.0 | 22288 | 0.8475 | 0.2402 | 19.0 |
0.2083 | 57.0 | 22686 | 0.8618 | 0.2163 | 19.0 |
0.202 | 58.0 | 23084 | 0.8572 | 0.2164 | 19.0 |
0.202 | 59.0 | 23482 | 0.8736 | 0.217 | 19.0 |
0.1968 | 60.0 | 23880 | 0.8894 | 0.2166 | 19.0 |
0.1904 | 61.0 | 24278 | 0.8928 | 0.2241 | 19.0 |
0.1847 | 62.0 | 24676 | 0.9058 | 0.2219 | 19.0 |
0.1803 | 63.0 | 25074 | 0.9057 | 0.2336 | 19.0 |
0.1803 | 64.0 | 25472 | 0.9174 | 0.2156 | 19.0 |
0.1758 | 65.0 | 25870 | 0.9230 | 0.1951 | 19.0 |
0.1701 | 66.0 | 26268 | 0.9350 | 0.2249 | 19.0 |
0.1673 | 67.0 | 26666 | 0.9417 | 0.2224 | 19.0 |
0.1614 | 68.0 | 27064 | 0.9509 | 0.2161 | 19.0 |
0.1614 | 69.0 | 27462 | 0.9653 | 0.2183 | 19.0 |
0.1578 | 70.0 | 27860 | 0.9633 | 0.2113 | 19.0 |
0.1536 | 71.0 | 28258 | 0.9783 | 0.2177 | 19.0 |
0.1513 | 72.0 | 28656 | 0.9755 | 0.2179 | 19.0 |
0.147 | 73.0 | 29054 | 0.9911 | 0.2273 | 19.0 |
0.147 | 74.0 | 29452 | 0.9855 | 0.2157 | 19.0 |
0.1443 | 75.0 | 29850 | 0.9998 | 0.2169 | 19.0 |
0.1401 | 76.0 | 30248 | 1.0128 | 0.2124 | 19.0 |
0.1377 | 77.0 | 30646 | 1.0114 | 0.2159 | 19.0 |
0.1342 | 78.0 | 31044 | 1.0249 | 0.2152 | 19.0 |
0.1342 | 79.0 | 31442 | 1.0258 | 0.2233 | 19.0 |
0.1336 | 80.0 | 31840 | 1.0309 | 0.2194 | 19.0 |
0.1307 | 81.0 | 32238 | 1.0321 | 0.2122 | 19.0 |
0.1277 | 82.0 | 32636 | 1.0340 | 0.2191 | 19.0 |
0.1262 | 83.0 | 33034 | 1.0493 | 0.2123 | 19.0 |
0.1262 | 84.0 | 33432 | 1.0545 | 0.2273 | 19.0 |
0.1233 | 85.0 | 33830 | 1.0550 | 0.2184 | 19.0 |
0.1233 | 86.0 | 34228 | 1.0546 | 0.2241 | 19.0 |
0.1205 | 87.0 | 34626 | 1.0696 | 0.2246 | 19.0 |
0.1189 | 88.0 | 35024 | 1.0730 | 0.2237 | 19.0 |
0.1189 | 89.0 | 35422 | 1.0688 | 0.2308 | 19.0 |
0.1173 | 90.0 | 35820 | 1.0783 | 0.2267 | 19.0 |
0.1154 | 91.0 | 36218 | 1.0767 | 0.2262 | 19.0 |
0.115 | 92.0 | 36616 | 1.0835 | 0.2214 | 19.0 |
0.1136 | 93.0 | 37014 | 1.0788 | 0.2284 | 19.0 |
0.1136 | 94.0 | 37412 | 1.0876 | 0.2269 | 19.0 |
0.1126 | 95.0 | 37810 | 1.0936 | 0.2212 | 19.0 |
0.1118 | 96.0 | 38208 | 1.0918 | 0.2207 | 19.0 |
0.111 | 97.0 | 38606 | 1.0944 | 0.2217 | 19.0 |
0.1106 | 98.0 | 39004 | 1.0962 | 0.2203 | 19.0 |
0.1106 | 99.0 | 39402 | 1.0994 | 0.2182 | 19.0 |
0.1088 | 100.0 | 39800 | 1.0999 | 0.2193 | 19.0 |
Framework versions
- Transformers 4.29.2
- Pytorch 2.0.1+cu118
- Datasets 2.12.0
- Tokenizers 0.13.3