<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->
resnet-101-finetuned_resnet101-cnn-autotags
This model is a fine-tuned version of microsoft/resnet-101 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.2099
- Accuracy: 0.9229
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
2.0434 | 0.99 | 65 | 1.6045 | 0.4829 |
0.9013 | 1.99 | 130 | 0.6946 | 0.7648 |
0.7097 | 2.99 | 195 | 0.4928 | 0.8295 |
0.4386 | 3.99 | 260 | 0.3632 | 0.8610 |
0.4261 | 4.99 | 325 | 0.3269 | 0.8838 |
0.3181 | 5.99 | 390 | 0.2790 | 0.9010 |
0.2349 | 6.99 | 455 | 0.2377 | 0.9190 |
0.1615 | 7.99 | 520 | 0.2416 | 0.9114 |
0.1146 | 8.99 | 585 | 0.2162 | 0.9219 |
0.1254 | 9.99 | 650 | 0.2099 | 0.9229 |
Framework versions
- Transformers 4.25.1
- Pytorch 1.13.1+cu117
- Datasets 2.11.0
- Tokenizers 0.13.2