jjglilleberg/bert-finetuned-ner-nbci-disease
This model is a fine-tuned version of bert-base-cased on the NCBI Disease Dataset. It achieves the following results on the evaluation set:
- Precision: 0.759090909090909,
 - Recall: 0.8487928843710292,
 - F1: 0.8014397120575885,
 - Number: 787,
 - Overall_precision: 0.759090909090909,
 - Overall_recall: 0.8487928843710292,
 - Overall_f1: 0.8014397120575885,
 - Overall_accuracy: 0.9824785260799204
 
Model description
More information needed
Intended uses & limitations
The intended use of this model is for Disease Name Recognition and Concept Normalization.
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- optimizer:
- 'name': 'AdamWeightDecay',
 - 'learning_rate':
- 'class_name': 'PolynomialDecay',
 - 'config':
- 'initial_learning_rate': 2e-05,
 - 'decay_steps': 1020,
 - 'end_learning_rate': 0.0,
 - 'power': 1.0,
 - 'cycle': False,
 - 'name': None
 
 
 - 'decay': 0.0,
 - 'beta_1': 0.9,
 - 'beta_2': 0.999,
 - 'epsilon': 1e-08,
 - 'amsgrad': False,
 - 'weight_decay_rate': 0.01
 
 - training_precision: mixed_float16
 
Training results
| Train Loss | Validation Loss | Epoch | 
|---|---|---|
| 0.1281 | 0.0561 | 0 | 
| 0.0372 | 0.0596 | 1 | 
| 0.0211 | 0.0645 | 2 | 
Framework versions
- Transformers 4.28.0
 - TensorFlow 2.12.0
 - Datasets 2.11.0
 - Tokenizers 0.13.3