<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->
uitviquad_noseg_bart
This model is a fine-tuned version of google/mt5-small on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.7253
 
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
 - train_batch_size: 8
 - eval_batch_size: 8
 - seed: 42
 - gradient_accumulation_steps: 16
 - total_train_batch_size: 128
 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
 - lr_scheduler_type: linear
 - num_epochs: 15
 
Training results
| Training Loss | Epoch | Step | Validation Loss | 
|---|---|---|---|
| 20.7767 | 0.45 | 100 | 10.0605 | 
| 13.9887 | 0.9 | 200 | 7.6241 | 
| 9.9698 | 1.35 | 300 | 5.6805 | 
| 7.0255 | 1.8 | 400 | 3.2683 | 
| 5.424 | 2.25 | 500 | 2.6617 | 
| 4.731 | 2.7 | 600 | 1.9936 | 
| 4.0452 | 3.15 | 700 | 1.6257 | 
| 3.4385 | 3.6 | 800 | 1.4585 | 
| 2.9751 | 4.05 | 900 | 1.3627 | 
| 2.6369 | 4.5 | 1000 | 1.2824 | 
| 2.3538 | 4.95 | 1100 | 1.2082 | 
| 2.1737 | 5.4 | 1200 | 1.1418 | 
| 2.0271 | 5.85 | 1300 | 1.0817 | 
| 1.9121 | 6.3 | 1400 | 1.0290 | 
| 1.8308 | 6.75 | 1500 | 0.9858 | 
| 1.7694 | 7.2 | 1600 | 0.9456 | 
| 1.7025 | 7.65 | 1700 | 0.9107 | 
| 1.6458 | 8.1 | 1800 | 0.8782 | 
| 1.6022 | 8.55 | 1900 | 0.8516 | 
| 1.5802 | 9.0 | 2000 | 0.8288 | 
| 1.5482 | 9.45 | 2100 | 0.8119 | 
| 1.4982 | 9.9 | 2200 | 0.7938 | 
| 1.4836 | 10.35 | 2300 | 0.7802 | 
| 1.4647 | 10.8 | 2400 | 0.7680 | 
| 1.4437 | 11.25 | 2500 | 0.7571 | 
| 1.4165 | 11.7 | 2600 | 0.7498 | 
| 1.4275 | 12.15 | 2700 | 0.7422 | 
| 1.4045 | 12.59 | 2800 | 0.7375 | 
| 1.4104 | 13.04 | 2900 | 0.7324 | 
| 1.366 | 13.49 | 3000 | 0.7296 | 
| 1.3912 | 13.94 | 3100 | 0.7276 | 
| 1.3615 | 14.39 | 3200 | 0.7260 | 
| 1.3801 | 14.84 | 3300 | 0.7253 | 
Framework versions
- Transformers 4.28.0
 - Pytorch 2.0.0+cu118
 - Datasets 2.11.0
 - Tokenizers 0.13.3