chemistry biology medical gpt2

DrugGPT

A generative drug design model based on GPT2. <img src="https://img.shields.io/github/license/LIYUESEN/druggpt"><img src="https://img.shields.io/badge/python-3.7-blue"><img src="https://img.shields.io/github/stars/LIYUESEN/druggpt?style=social">

🚩 Introduction

DrugGPT is a generative pharmaceutical strategy based on GPT structure, which aims to bring innovation to drug design by using natural language processing technique.

This project applies the GPT model to the exploration of chemical space to discover new molecules with potential binding abilities for specific proteins.

DrugGPT provides a fast and efficient method for the generation of drug candidate molecules by training on up to 1.8 million protein-ligand binding data.

📥 Deployment

  1. Clone
    git clone https://github.com/LIYUESEN/druggpt.git
    cd druggpt
    
    Or you can visit our GitHub repo and click Code>Download ZIP to download this repo.
  2. Create virtual environment
    conda create -n druggpt python=3.7
    conda activate druggpt
    
  3. Download python dependencies
    pip install datasets transformers scipy scikit-learn
    pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu117
    conda install -c openbabel openbabel
    

🗝 How to use

Use drug_generator.py

Required parameters:

🔬 Example usage

📝 How to reference this work

DrugGPT: A GPT-based Strategy for Designing Potential Ligands Targeting Specific Proteins

Yuesen Li, Chengyi Gao, Xin Song, Xiangyu Wang, Yungang Xu, Suxia Han

bioRxiv 2023.06.29.543848; doi: https://doi.org/10.1101/2023.06.29.543848

DOI

⚖ License

GNU General Public License v3.0